

Emissions for Global Modeling - Trends and Uncertainties

Greg Frost

NOAA/ESRL & University of Colorado/CIRES, Boulder, CO

- Motivation and Methods
- Global/Regional Inventory Comparisons
- Community Historic Emissions Efforts
- GEIA and ECCAD

Acknowledgements

C. Granier, I. Bouarar, S. Darras, H. Denier van der Gon, T. Doumbia, M. Gauss,

G. Janssens-Maenhout, T. Keating, Z. Klimont, J.I Kurokawa, J.F. Lamarque, C. Liousse,

P. Middleton, A. Mieville, T. Ohara, K. Sindelarova, S. Smith, L. Tarrason, Q. Zhang

Motivations for Understanding Emissions

Actions and decisions about the atmosphere focus on emissions.

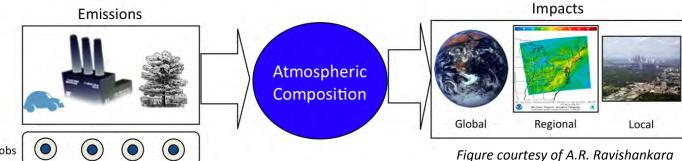


Figure courtesy of A.R. Ravishankara

Accurate emissions information is needed for many purposes.

- Quantify and predict
- Understand changes
- Make choices

- Evaluate mitigation
- Demonstrate compliance

This is the Century of Accountability **David Fahey**

Societal development and scientific innovation result in new challenges in emissions understanding.

- Dynamic economies
- Changing demographics
- Evolving land use
- Emerging energy sources
- New measurements
- Better process descriptions
- *Improved models*

Stakeholders and decision-makers have common requirements for emissions information, but challenges with emissions information persist.

- Transparency
- Consistency
- Accuracy
- Timeliness
- Uncertainty

- Complexity
- Development
- Analysis
- Communication

Bottom-Up Inventory Methods

Total mass of compound X emitted

Sum up all sources S

Emissions factor = mass of compound X emitted by source S per unit activity

 $\Rightarrow E_{X} = \sum_{S} [EF_{X,S} \cdot A_{S} \cdot (1 - CE_{X,S})]$

Activity of source S, e.g., amount of fuel burned

Effectiveness of control measures for compound X at source S

122

Calculated for...

Specific region Specific time

Also need...

Spatial allocation Temporal variation Speciation

Example: On-road motor vehicles

Vehicle fleet

Emissions source

Road type

Fuel type

Fuel economy

Distance driven

Control technology

Vehicle load

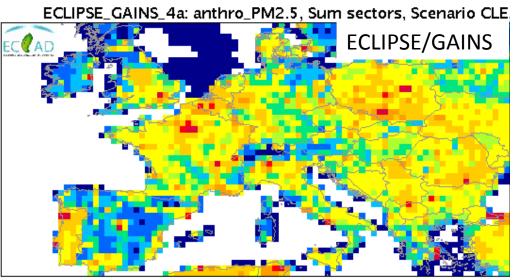
Global/Regional Inventory Comparisons

- Update of C. Granier et al., Climatic Change, 2011
- Only public anthropogenic emissions datasets considered
- SO2, BC, OC, PM2.5/10 discussed here; CO, NOx, VOCs also analyzed
- Global Datasets:
 - MACCity (1980-2010) ≈ AEROCOM-II (Community dataset; Granier et al., Clim Chg, 2011)
 - EDGARv3 (2000), EDGAR v4.2 (1970-2008), HTAPv2 (2008) (JRC, Italy)
 - ECLIPSE FP7 project (2005 and 2010) (IIASA, Austria)
 - PNNL SO2 (PNNL, USA)
 - Bond (U Illinois, USA)
 - Junker-Liousse (Laboratoire d'Aérologie, France)
 - RCPs (CMIP5 & IPCC AR5 activities)

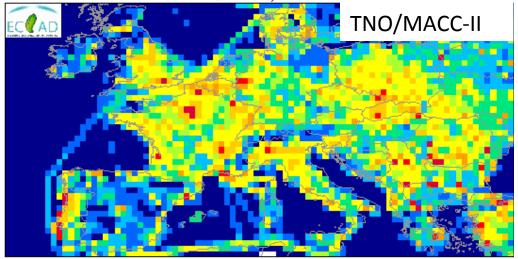
Regional Datasets:

- EPA NEI (1980-2010) for USA (US Environmental Protection Agency)
- TNO-MACC, TNO-MACCII (2003-2009) for Europe (EU's MACC project)
- EMEP for Europe (1980-2010) (European Monitoring & Evaluation Programme)
- GAINS-GEA for Europe (2005 and 2010) (IIASA, Austria)
- REAS and REAS-v2 for Asia (1980-2020) (NIES, Japan)
- Lu-Streets for Asia (Argonne Natl Lab, USA & Tsinghua U, Beijing)
- MEIC for China (2008-2010) (not yet published Tsinghua U, China)
- Lei for China (Lei et al., ACP 2011 Tsinghua U, China)
- Cao-Zhao for China (Cao et al., AE, 2006 CAMS, Beijing; Zhao ACP 2011 Tsinghua U, Beijing)
- Garg for India (Garg et al., AE, 2006 Denmark/India)
- SAFAR for India (Sahu et al., Atmos Polln Res, 2012 IITM, India)

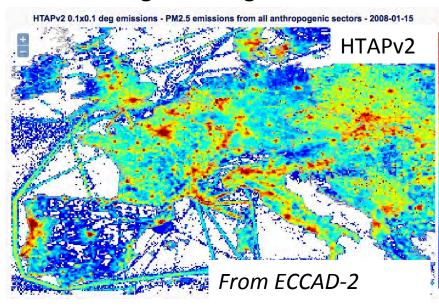
NOTE:


In the original presentation, 7 slides followed that showed historical inventory comparisons/evaluations carried out by Claire Granier.

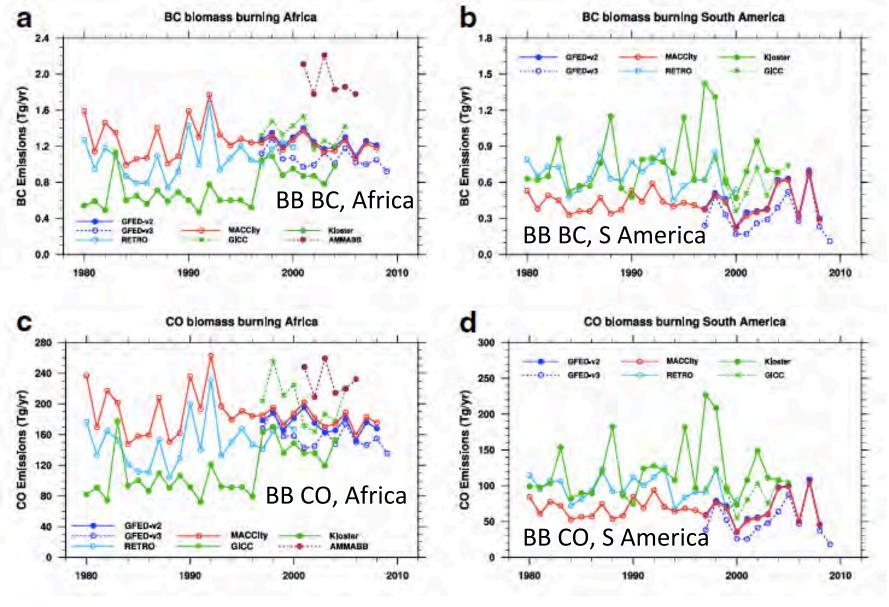
These slides contained data which have not yet been published, so the slides have been removed from the posted version of this presentation file.


If you are interested in participating in the inventory evaluation, please contact Claire: claire.granier@latmos.ipsl.fr

Spatial Distribution of Emissions


0.5 deg x 0.5 deg resolution

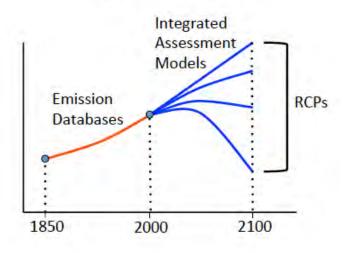
TNO-MACC-II: anthro_PM2.5, 2005



0.1 deg x 0.1 deg resolution

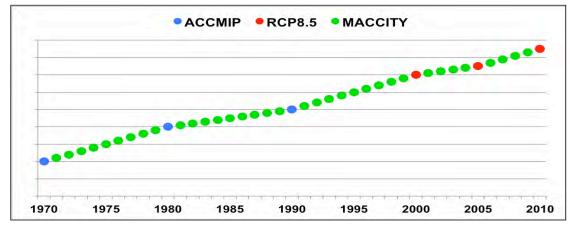
Lat: 36=>58, Lon: -14=>30

Biomass burning emission datasets

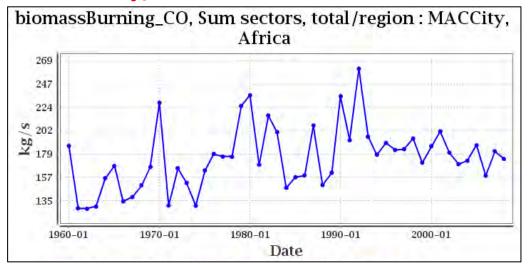


C. Granier et al., Climatic Change, 2011

Existing Community Historical Inventories

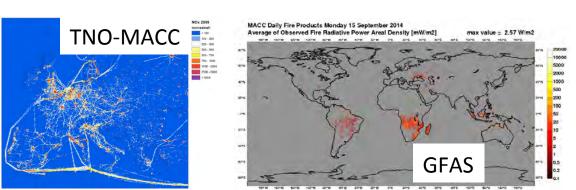

ACCMIP

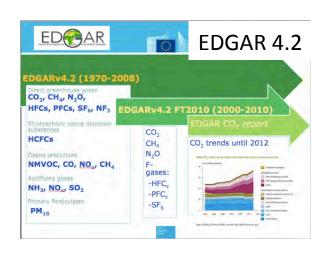
Emissions (anthropogenic & biomass burning) for ACCMIP: best estimate



J.-F. Lamarque et al., *Atmos. Chem. Phys.*, 2010

MACCity AEROCOM-II anthropogenic


MACCity/AEROCOM-II fires in Africa



C. Granier +25 co-authors, Climatic Change, 2011

New Community Historical Inventory

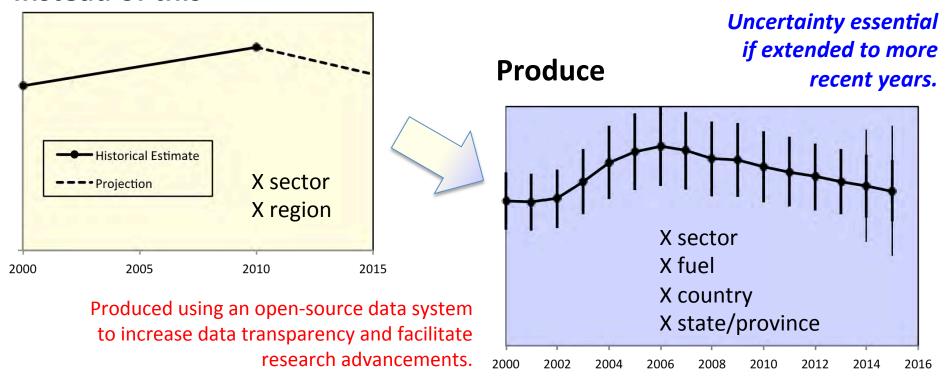
- Organized by Global Emissions InitiAtive (GEIA)
- Uncertainty by emission and sector
 - → Historical emissions ensembles
 - → Inventory comparisons can inform uncertainty estimates
- Consistent historical trends
- Seasonality in anthropogenic emissions
- Consistent with CO₂ emissions
- Annual emissions by country (& state)
- Additional sectoral detail
- Better NMVOCs speciation
- 0.1x0.1 degree resolution when possible
- First data available in time for CMIP6 model runs

2000 2001 2002 2003 2004 2005 2006 2007 2008

OSA OSEA OCEA

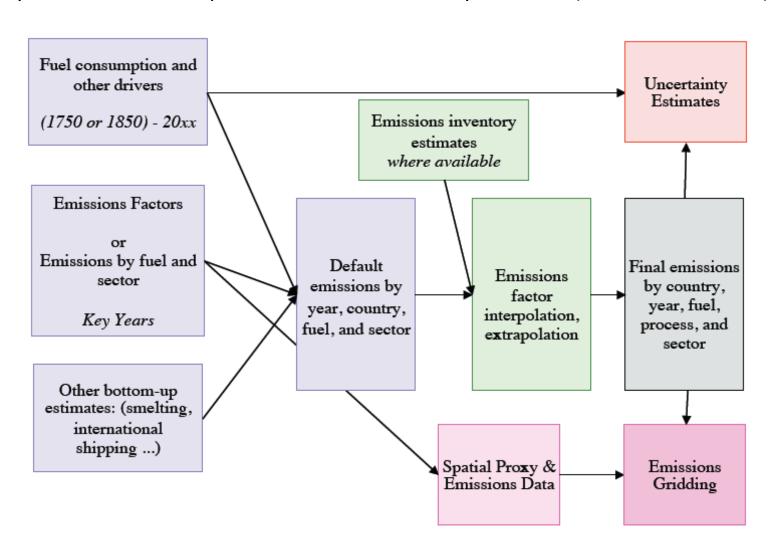
BCHN

RFAS


(a) SO, Asia

Emission [Tg/Year]

Community Emissions Data System


Produce timely estimates for emissions of aerosol (BC, OC) and aerosol precursor compounds (SO₂, NO_x, NH₃, CH₄, CO, NMVOC)

Instead of this

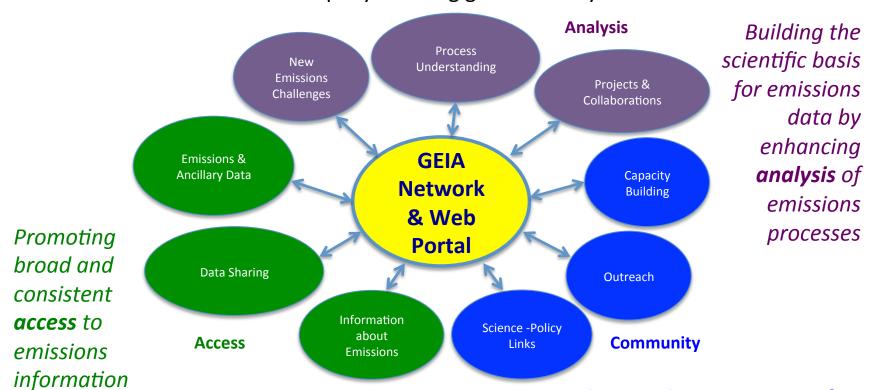
Community Emissions Data System

System under development at PNNL/Univ. Maryland, USA (Steven Smith et al.)

Community Emissions Data System

System under development at Laboratoire d'Aérologie, France (Cathy Liousse et al.)

1). OUTPUT TYPE - What kind of data do you want ? BC (tor	ns/year)	Ŧ		
2). MULTI YEAR * MULTI SCENARIO - (for mapping, use © UNSTA' Only UNSTAT Only UNSTAT 1950 1951	Т	•	POLES CCC	
1952 1953 1954 1955 1 1956 1		C	2020 2020 2030	
MULTI COUNTRIES AFGHANIST ALBANIA ALGERIA AMERICANSAMOA ANGOLA AZERBAJAN ANTIGUA&B ARGENTINA MULTI REGIONS (Little help: List of countries?) ASIA_AII BRAZIL CARRIB-SMALLISL CENTRAFRICA CENTRAMERICA CHINA EAFRICA FAFRICA	Longitude minimale: -179.5	Select LA Latitude 89.5	maximale:	Longitude maximal
4.1). OUTPUT FORMAT (for BC/OC ratio, only "Fuel: No of Activity: No details" avalaible) FOR FUELS: No fuel details 4.2). Do you want to consider selected items as a whole region.	details - FO ACTI	R VITIES:		y "C/D/I Activities" 🔻



Mission

GEIA is a community initiative that builds bridges between environmental science and policy, by bringing together people, data, and tools to *create* and *communicate* the highest quality information about *emissions*.

Goals

GEIA aims to be a key forum for emissions knowledge serving stakeholders and decision-makers in a rapidly evolving global society.

Strengthening the **community** of emissions stakeholder groups

GEIA Leadership 2014-2016

Executive Committee

Co-Chairs: Gregory Frost, Leonor Tarrasón

Database Manager: Claire Granier

Network Manager: Paulette Middleton

Scientific Steering Committee*

Alexander Baklanov (Switzerland)

Beatriz Cardenas (Mexico)

Hugo Denier van der Gon (*The Netherlands*)

Gregory Frost (*USA*)

Claire Granier (*France, USA, Germany*)

Alex Guenther (*USA*)

Greet Janssens-Maenhout (*Italy*)

Johannes Kaiser (*Germany*)

Terry Keating (*USA*)

Zbigniew Klimont (Austria)

Catherine Liousse (*France*)

Paulette Middleton (*USA*)

Toshimasa Ohara (*Japan*)

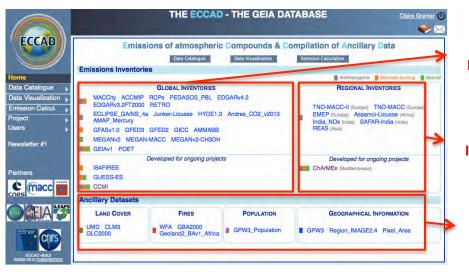
Martin Schultz (Germany)

Ute Skiba (*UK*)

Leonor Tarrasón (*Norway*)

Yuxuan Wang (China)

* SSC adding 1-2 new members in 2014, to replace outgoing members (J.-F. Lamarque, J. van Aardenne) and to increase representation from outside USA & Europe


ECCAD

Emissions of Atmospheric Compounds & Compilation of Ancillary Data

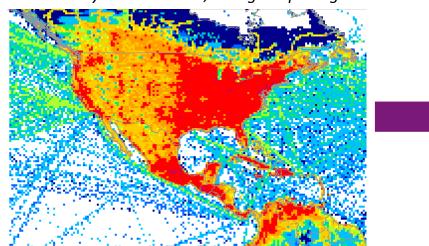
GEIA's emissions database & visualization/analysis platform

Distributing data for research & assessment efforts

Global Inventories

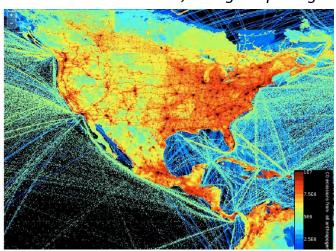
Regional Inventories

Ancillary Datasets


http://pole-ether.fr/eccad

Work underway on new ECCAD database, platform, and interface

- Any lat/lon resolution data
- Regrid to any lat/lon grid
- Adapted to interoperability
- Detailed documentation


Current Resolution

MACCity CO Emissions, 0.5° grid spacing

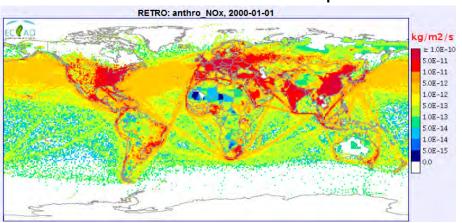
Future Resolution

HTAPv2 CO Emissions, 0.1° grid spacing

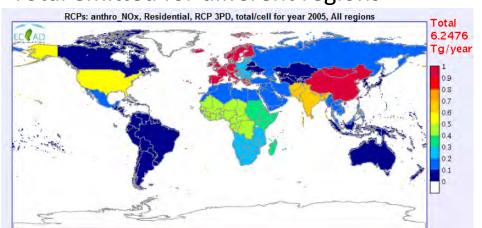
Product release year	♦ Temporal Coverage	♦ Time resolution	Category Hover to see Species	♦ Grid size	Data provider	Metadat
GLOBA	AL INVENTORIES (2	22)	Species			
MACCity 2010	1960 - 2020	Monthly	Anthropogenic Biomass burning	0.5°	(macc	100
ACCMIP 2010	1850 - 2000	Decadal Decadal-Monthly	Anthropogenic Biomass burning	0.5°	AÇCIMIP.	
RCPs 2010	2005 - 2100	Decadal Decadal-Monthly	Anthropogenic Biomass burning	0.5°	RCPs	
PEGASOS PBL 2013	1990 - 2100	Yearly	Anthropogenic Biomass burning	0.5°	PEGASOS	Por
EDGARv4.2 2011	1970 - 2008	Yearly	Anthropogenic Biomass burning	0.5°	ED AR	
EDGARv3.2FT2000 2005	2000	Yearly	Anthropogenic Biomass burning	1°	ED	POF
RETRO 2005	1960 - 2000	Monthly	Anthropogenic Biomass burning	0.5°	пэтпо	707
ECLIPSE GAINS 4a 2013	2005 - 2050	Yearly	Anthropogenic	0.5°	ECLIPSE	Por
Junker-Liousse 2008	1860 - 2003	Decadal/Yearly	Anthropogenic	1°		POF .
HYDE1.3 2001	1890 - 1990	Decadal	Anthropogenic	1°	ED AR	705
Andres CO2 v2013 2013	1751 - 2010	Yearly	Anthropogenic	1°	CDIAC	
AMAP Mercury 2005	1995 - 2000	Half-decadal	Anthropogenic	0.5°	Na.	
GFASv1.0 2012	2003 - 2013	Daily	Blomass burning	0.5°	macc	E COL
GFED3 2010	1997 - 2010	Monthly	Biomass burning	0.5°	GFED	
GFED2 2005	1997 - 2005	Monthly	Blomass burning	1°	GFED	
GICC 2010	1900 - 2005	Decadal-Monthly/ Monthly	Biomass burning	0.5°	LATMOS	
AMMABB 2009	2000 - 2006	Daily	Blomass burning	0.5°		
MEGAN-MACC 2012	1980 - 2010	Monthly	Biogenic	0.5°	NCAR Macc	
MEGANv2 2009	2000	Monthly	Biogenic	0.5°	NCAR	
MEGANv2-CH3OH 2011	2003 - 2009	Yearly (seasonal)	Biogenic	0.5°	A	
GEIAV1 1990	1984 - 1990	Yearly Monthly: NOx Ligthning, NOx from Soils, BC Biom. Burn.	Anthropogenic Biomass burning Biogenic Oceanic Lightning Volcanic Total	1°	GEIA	
POET 2003	1990 - 2000	Yearly Monthly Monthly Yearly	Anthropogenic Biomass burning Biogenic Oceanic	1°	POET	

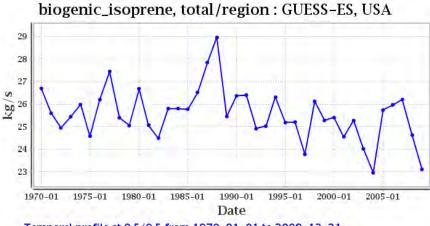
ECCAD Datasets

http://pole-ether.fr/eccad

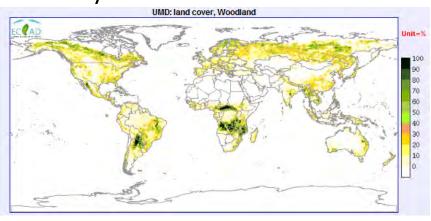

Many different inventories, including global and regional datasets

	GLOBAL	INVENTORIES DE	VELOPED FOR ONGOI	NG PROJECTS (3)			
IS4FIRES	2012	2000 - 2011	Daily	Biomass burning	0.5°	- Williams	Por
GUESS-ES	2011	1970 - 2009	Monthly	Biomass burning Biogenic	1°		
CCMI	2013	2000	Yearly/Monthly	Anthropogenic Biomass burning Biogenic Volcanic Total	0.5°	CCMI chemistry-climate model initiative	




Visualization of emissions maps

Total emitted for different regions



Temporal variation of national

Temporal profile at 0.5/0.5 from 1970-01-01 to 2009-12-31

Ancillary data

Currently under development: maps of comparison calculations, scatter plots

Be Active in the Emissions Community

- Contact us to get involved in any projects discussed here
- Use GEIA/ECCAD platforms to access & analyze data
- > Tell us about errors and ask questions about the data
- Contribute to next community historic emissions meeting
 - 4 November, Amsterdam (NCGG7): http://doodle.com/zacdaxbdi8zac9pg
- > Let us know what you think about any of these activities

Contacts

Inventory comparisons: Claire Granier (claire.granier@noaa.gov)

Community historic inventory: Claire Granier (claire.granier@noaa.gov)

Community emissions data systems: Steve Smith (ssmith@pnnl.gov),

Cathy Liousse (Cathy.Liousse@aero.obs-mip.fr)

GEIA: Greg Frost (gregory.j.frost@noaa.gov)

ECCAD: Claire Granier (claire.granier@noaa.gov)