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Aerosol impacts on climate

Aerosols have profound impacts on climate
e Scatter and absorb radiation

« Alter macro- and micro-physical cloud properties

* Aerosol “indirect effects” on
microphysical cloud properties
are uncertain
and difficult to quantify at
global scale

gfdl.noaa.gov

University of Southern California

3



Aerosol “indirect effects” on warm clouds

Challenging to model these microphysical processes in a
global climate model (with large grid cells)

more reflection — higher albedo
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Research goals

(1) Assess global distributions of aerosol and cloud properties
in three global climate models and satellite observations

« Assure model vs observation comparison is as “apples to
apples” as possible

(2) Compare signatures of aerosol-cloud interactions

* Focusing on regional analysis with specific cloud regimes
(subtropical stratocumulus)

* Focusing on effect of aerosol on cloud droplet number conc (N)

« Accounting for meteorological influences

University of Southern California
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Climate models and observations

Climate models s
- CAM5 (1.9°x 2.5°) o 0
* GISS ModelE2 (2°x 2.5°) o |
« GFDL AM3 (2°x 2.5°) Z3

I
fJ ﬁi
1

image source: serc.carleton.edu

Observations
« MODIS L3C5 (1°x 1°)
 ERA-INT reanalysis (0.5°x 0.5°)
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GCM simulation details

- Simulation period: Jan 1 2007- Jan 1 2009 = =

ZZzzZ= S S SSRaL:
* CMIPS emissions i R
» To maximize comparability of GCM and Sineaer
observations: :

* Prescribed sea surface temperatures

* Horizontal winds are nudged to reanalysis

* High frequency (3 hourly) GCM output

 Extract satellite overpass times

* CFMIP Observation Simulator Package (COSP)

 Satellite-observed and simulated cloud drop
number concentration (N) use same algorithm

University of Southern California

7




Aerosol optical depth — 2yr annual mean

MODIS (observation) AM3 (model)
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Cloud droplet number concentration (# cm)

MODIS (observation) AM3 (MODIS simulator)
* Observed N.

- Calculated from MODIS liquid T, and r, (Bennartz 2007)

- Assumes clouds are adiabatically stratified (LWC increases
linearly and N is constant with height)

_ o 1/2 y -5/2
N~z Vr,

 Modeled N:

- Computed from MODIS-simulated values using the same
algorithm as MODIS observations

L
h « Comparison:

— Liquid clouds only

—— — Pixels with liquid cloud fraction < 0.3 are screened

' - In-cloud N 2
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Cloud droplet number concentration (# cm)
MODIS (observation) AM3 (MODIS simulator)
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Spatial-mean dailies (SAF)
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Spatial-mean dailies (SAF)

Quick aside: Interesting method for evaluating cloud thickness

— MODIS -— AM3 ~ — CAM5 — ModelE2
SAF Cloud thickness H (m)
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Sensitivity of N to T, in SAF region

Hm MODIS
LB oo L . .AM3........ .
B CAM5

E ModelE2

AIn(N)/AIn(ty)

-0.4 Ban-Weiss
ALL SON DJF MAM JJA et al. (2014)
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Sensitivity of N to T, in SAF region

AIn(N)/AIn(ty)

MODIS
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CAM5
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But N is also sensitive to meteorology. And
meteorology and t, covary

dIn(N)
dIn(t,)

dIn(N)
d(met) .

Aln(N) = Aln(z,) + (Amet)

met

Cloud-aerosol
sensitivity under
constant
“meteorology”

Cloud-"meteorology”
sensitivity under
constant aerosol
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But N is also sensitive to meteorology. And
meteorology and t, covary

dIn(N)
dIn(t,)

dIn(N)
d(met) .

Aln(N) = Aln(z,) + (Amet)

met

AlIn(N) _ JdIn(N) . d(met) JdIn(N)
Aln(t,) JdlIn(t,) dIn(t,) d(met)

met
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But N is also sensitive to meteorology. And
meteorology and t, covary

dIn(N)
din(t,)|

dIn(N)

Aln(N)=Aln(7,) e

+ (Amet)

Aln(N)' Io”ln(N) ' -d(met) dIn(N)
Aln(t, )' -&ln(r )

Total sensitivity Partial sensitivity ~ Confounding meteorological effects
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But N is also sensitive to meteorology. And
meteorology and t, covary

dIn(N)
dIn(t,) .

dIn(N)

Aln(N)=Aln(7,) omen)

+ (Amet)

Aln(N)' Io”ln(N) ' -d(met) dIn(N)
Aln(t, )' -&ln(r )

Total sensitivity Partial sensitivity ~ Confounding meteorological effects

met = relative humidity @ 1000 and 700 hPa
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Comparing sensitivity of N to t,
with and without considering met (RH in two layers)
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MODIS AM3 CAM5 ModelE2 Ban-Weiss et al. (2014)
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Implications of the differences for total versus
partial sensitivity

We should expect differences between observations and models in

) .
since models do not represent all
Aln(T,)

confounding meteorological processes

the “total” sensitivity

As aerosol-cloud parameterizations move away from empirical
relationships, e.g. N =-598 +2981log(N, ), and toward more physically
realistic process descriptions, total sensitivity will change even for

constant partial sensitivity JIn(V)
din(t,)|

Ban-Weiss et al. (2014)
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Comparing satellite-simulated model values
versus standard model output

CAMS5 in SAF N (cm3)
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Standard model values are markedly lower
than satellite-simulated values for N

CAMS in SAF
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Implications: standard model values are nearer
to observations than satellite-simulated values

* Unclear whether difference between satellite-simulated
and standard model values are driven by differences in
deriving T.and r,, or the algorithm for deriving N

AlIn(N)
Aln(t,)

versus standard model output is biased

for observations

* May suggest that comparing

 What is the right metric for comparing to observations?

Ban-Weiss et al. (2014)
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Cavaets and study limitations

* |s aerosol optical depth a good proxy for cloud
condensation nuclei (CCN)?

* Are aerosols and clouds vertically collocated?
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See Ban-Weiss et al. (2014) JGR

more regions and interpretations
more detailed comparison of the differences in
aerosol and cloud parameterizations between the

models

comparison to previous generations of the model

University of Southern California
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Conclusions

» Aerosol optical depth spatial pattern

« CAM5, AM3, and ModelE2 match MODIS observed aerosol optical
depth quite well

 Cloud droplet number concentration spatial pattern

« CAMS and AM3 capture the MODIS observed spatial pattern of N
* ModelE2 pattern is reversed

« Magnitude of N in ‘SAF’:

« AM3 and ModelE2 are near MODIS observations

 CAMS overpredicts N (because of corresponding overpredictions
in liquid T, and underpredictions in r,)

University of Southern California
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Conclusions

Sensitivity of Ntot, 2V jn ‘SAF’

Aln(t,)

« CAM5 and AM3 more sensitive than observations
* ModelE2 has high uncertainty

Aln(N)
Aln(t,)

Covariation between N, t,, and meteorology confounds

v Vg

AIn(N)
Differences in Aln(t,) between observations and models should be
expected given the different degrees to which they represent these
confounding factors.

Aln(N)
Aln(t))

As parameterizations evolve,
aerosol-cloud interactions

may change even for constant

Satellite-simulated model values for N are much higher than standard
model values (bias = 83 cm3).
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