Evaluating aerosols, clouds, and their interactions in three global climate models using satellite simulators and observations



#### George Ban-Weiss

Assistant Professor banweiss@usc.edu

13<sup>th</sup> AeroCom Workshop October 1, 2014



## Acknowledgements

- Susanne Bauer (NASA GISS)
- Ling Jin (LBNL)
- Yi Ming (GFDL)
- Xiaohong Liu (Univ of Wyoming)
- Kai Zhang (PNNL)
- Ralf Bennartz (Vanderbilt Univ)
- Jonathan Jiang (JPL)
- Sponsor: Dept of Energy, Climate and Environmental Sciences Division, FASTER (FAst-physics System TEstbed and Research)



University of Southern California





## Aerosol impacts on climate

- Aerosols have profound impacts on climate
  - Scatter and absorb radiation
  - Alter macro- and micro-physical cloud properties
- Aerosol "indirect effects" on microphysical cloud properties are uncertain and difficult to quantify at global scale



gfdl.noaa.gov



### Aerosol "indirect effects" on warm clouds

Challenging to model these microphysical processes in a global climate model (with large grid cells)



source: IPCC AR4, WG1





- (1) Assess global distributions of aerosol and cloud properties in three global climate models and satellite observations
  - Assure model vs observation comparison is as "apples to apples" as possible
- (2) Compare signatures of aerosol-cloud interactions
  - Focusing on regional analysis with specific cloud regimes (subtropical stratocumulus)
  - Focusing on effect of aerosol on cloud droplet number conc (*N*)
  - Accounting for meteorological influences



### **Climate models and observations**

#### Climate models

- CAM5 (1.9°x 2.5°)
- GISS ModelE2 (2°x 2.5°)
- GFDL AM3 (2°x 2.5°)



image source: serc.carleton.edu

#### **Observations**

School of Engineering

- MODIS L3C5 (1°x 1°)
- ERA-INT reanalysis (0.5°x 0.5°)





## GCM simulation details

- Simulation period: Jan 1 2007- Jan 1 2009
- CMIP5 emissions
- To maximize comparability of GCM and observations:



- Prescribed sea surface temperatures
- Horizontal winds are nudged to reanalysis
- High frequency (3 hourly) GCM output
- Extract satellite overpass times
- CFMIP Observation Simulator Package (COSP)
- Satellite-observed and simulated cloud drop number concentration (*N*) use same algorithm



### Aerosol optical depth – 2yr annual mean

#### MODIS (observation)



#### CAM5 (model)

#### AM3 (model)



#### ModelE2 (model)



### Cloud droplet number concentration (# cm<sup>-3</sup>)



### Cloud droplet number concentration (# cm<sup>-3</sup>)

#### MODIS (observation)



CAM5 (MODIS simulator)

#### AM3 (MODIS simulator)



ModelE2 (MODIS simulator)



### Spatial-mean dailies (SAF)



University of Southern California 11

School of Engineering

## Spatial-mean dailies (SAF)

Quick aside: Interesting method for evaluating cloud thickness



Ban-Weiss et al. (2014)



### Sensitivity of *N* to $\tau_a$ in SAF region



School of Engineering

### Sensitivity of N to $\tau_a$ in SAF region



# But N is also sensitive to meteorology. And meteorology and $\tau_a$ covary





# But N is also sensitive to meteorology. And meteorology and $\tau_{\rm a}$ covary

$$\begin{split} \Delta \ln(N) &= \Delta \ln(\tau_{\rm a}) \frac{\partial \ln(N)}{\partial \ln(\tau_{\rm a})} \bigg|_{\rm met} + (\Delta met) \frac{\partial \ln(N)}{\partial (met)} \bigg|_{\tau_{\rm a}} \\ & \frac{\Delta \ln(N)}{\Delta \ln(\tau_{\rm a})} = \frac{\partial \ln(N)}{\partial \ln(\tau_{\rm a})} \bigg|_{\rm met} + \frac{d(met)}{d \ln(\tau_{\rm a})} \frac{\partial \ln(N)}{\partial (met)} \bigg|_{\tau_{\rm a}} \end{split}$$



# But N is also sensitive to meteorology. And meteorology and $\tau_{\rm a}$ covary

$$\Delta \ln(N) = \Delta \ln(\tau_{a}) \frac{\partial \ln(N)}{\partial \ln(\tau_{a})} \bigg|_{met} + (\Delta met) \frac{\partial \ln(N)}{\partial (met)} \bigg|_{\tau_{a}}$$
$$\frac{\Delta \ln(N)}{\Delta \ln(\tau_{a})} = \left[ \frac{\partial \ln(N)}{\partial \ln(\tau_{a})} \bigg|_{met} + \frac{d(met)}{d \ln(\tau_{a})} \frac{\partial \ln(N)}{\partial (met)} \bigg|_{\tau_{a}} \right]$$
Total sensitivity Partial sensitivity Confounding meteorological effects



# But N is also sensitive to meteorology. And meteorology and $\tau_{\rm a}$ covary

$$\Delta \ln(N) = \Delta \ln(\tau_{a}) \frac{\partial \ln(N)}{\partial \ln(\tau_{a})} \bigg|_{met} + (\Delta met) \frac{\partial \ln(N)}{\partial (met)} \bigg|_{\tau_{a}}$$
$$\left[ \frac{\Delta \ln(N)}{\Delta \ln(\tau_{a})} \right] = \left[ \frac{\partial \ln(N)}{\partial \ln(\tau_{a})} \bigg|_{met} \right] + \left[ \frac{d(met)}{d \ln(\tau_{a})} \frac{\partial \ln(N)}{\partial (met)} \bigg|_{\tau_{a}} \right]$$
$$Total sensitivity Partial sensitivity Confounding meteorological effects$$

#### met = relative humidity @ 1000 and 700 hPa



## Comparing sensitivity of *N* to $\tau_a$ with and without considering met (RH in two layers)



School of Engineering

## Implications of the differences for total versus partial sensitivity

- We should expect differences between observations and models in the "total" sensitivity  $\frac{\Delta \ln(N)}{\Delta \ln(\tau_a)}$  since models do not represent all confounding meteorological processes
- As aerosol-cloud parameterizations move away from empirical relationships, e.g.  $N = -598 + 298 \log(N_a)$ , and toward more physically realistic process descriptions, total sensitivity will change even for constant partial sensitivity  $\frac{\partial \ln(N)}{\partial \ln(\tau_a)}\Big|_{met}$



# Comparing satellite-simulated model values versus standard model output



Ban-Weiss et al. (2014)



University of Southern California 21

# Standard model values are markedly lower than satellite-simulated values for *N*



Bias = 83 cm<sup>-3</sup> \*\* RMS = 98 cm<sup>-3</sup>

Bias ranges from 55 to 115 cm<sup>-3</sup> for other models and regions

\*\*this bias is roughly
half the difference between
satellite simulated and observed
values

Ban-Weiss et al. (2014)

University of Southern California

# Implications: standard model values are nearer to observations than satellite-simulated values

- Unclear whether difference between satellite-simulated and standard model values are driven by differences in deriving  $\tau_c$  and  $r_e$ , or the algorithm for deriving N
- May suggest that comparing  $\frac{\Delta \ln(N)}{\Delta \ln(\tau_a)}$  for observations versus standard model output is biased
- What is the right metric for comparing to observations?





### Cavaets and study limitations

- Is aerosol optical depth a good proxy for cloud condensation nuclei (CCN)?
- Are aerosols and clouds vertically collocated?



Source: Costantino and Breon (2010)



#### See Ban-Weiss et al. (2014) JGR

- more regions and interpretations
- more detailed comparison of the differences in aerosol and cloud parameterizations between the models
- comparison to previous generations of the model



University of Southern California 25

## Conclusions

- Aerosol optical depth spatial pattern
  - CAM5, AM3, and ModelE2 match MODIS observed aerosol optical depth quite well
- Cloud droplet number concentration spatial pattern
  - CAM5 and AM3 capture the MODIS observed spatial pattern of N
  - ModelE2 pattern is reversed
- Magnitude of *N* in 'SAF':
  - AM3 and ModelE2 are near MODIS observations
  - CAM5 overpredicts *N* (because of corresponding overpredictions in liquid  $\tau_c$  and underpredictions in  $r_e$ )



## Conclusions

- Sensitivity of N to  $\tau_a \frac{\Delta \ln(N)}{\Delta \ln(\tau_a)}$  in 'SAF'
  - CAM5 and AM3 more sensitive than observations
  - ModelE2 has high uncertainty
- Covariation between *N*,  $\tau_a$ , and meteorology confounds  $\frac{\Delta \ln(N)}{\Delta \ln(\tau_a)}$

#### $\Delta \ln(N)$

- Differences in  $\overline{\Delta \ln(\tau_a)}$  between observations and models should be expected given the different degrees to which they represent these confounding factors.
- As parameterizations evolve,  $\frac{\Delta \ln(N)}{\Delta \ln(\tau_a)}$  may change even for constant aerosol-cloud interactions
- Satellite-simulated model values for N are much higher than standard model values (bias = 83 cm<sup>-3</sup>).