

Øyvind Seland, Trond Iversen and Alf Kirkevåg

Acknowledgement: This research has been supported by the Norwegian Research Research Council through the NorClim project and through a grant of computing time

Aerocom meeting, Reykjavik, October 8-10th, 2008.

Overview

- GCM-Oslo versus GCM-UIO
- Contribution of
- Verification of aerosol absorption

Aerosol-climate interactions in CAM-Oslo

Major extensions to NCAR CAM3:

- Aerosol lifecycling and physical properties
 - Sea-Salt, Dust, SO₄, OM, BC
 - Size-modes of emitted primary particles are presumed
 - Concentrations are tagged to production and size mode
 - Process-specific mixing state (size dependent)
 - SO₄ gas phase production + nucleation or condensation on available particles
 - Clear-air and cloudy air coagulation
 - Wet-phase production in cloud droplets
 - Hygroscopic humidity swelling
 - Tables for modified size, optical, and physical properties
- Aerosol interactions with radiation
 - Refractive index according to mixing state and size
 - Optical Mie scattering and absorption
- Aerosol interaction with clouds
 - CCN activation by prescribed (old) or realized (new) super-saturations
 - Cloud droplet aging and influence on auto-conversion

Differences from GCM-Oslo

- CAM3 host model instead of CCM3
- Prognostic sea-salt and aerosol particles
- Not yet submitted to Aerocom main dataset
- Submitted to the EUCARII dataset (UIO-GCM ver2)

In RegClim Special issue, Tellus 60A, No.3

Tellus (2008), 60A, 459–491 Printed in Singapore. All rights reserved © 2008 The Authors Journal compilation © 2008 Blackwell Munksgaard

TELLUS

Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings

By ØYVIND SELAND*, TROND IVERSEN¹, ALF KIRKEVÅG and TRUDE STORELVMO^{1,2}, Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, Norway

(Manuscript received 3 May 2007; in final form 7 January 2007)

Modeled vs. measured annual surface concentrations:

CAM-Oslo direct radiative forcing, DRF, Year 2000 vs. "pre-industrial" (1750)

TOA global annual DRF is approximately zero.

TOA Aerosol Direct Radiative Forcing (since 1750)

	AeroCom B mean DRF at TOA	CAM-Oslo DRF at TOA
	(W m ⁻²)	(W m ⁻²)
Total	-0.22	+0.031
Contribution by SO4 only	-0.35	-0.34
Contribution by SO4 and OM	-0.47	-0.50
Contribution by SO4 and BC	-0.05	+0.16
Contribution by BC and OM	+0.13	+0.38

 \rightarrow Our aerosol absorbs more light than many other models...

Direct radiative forcing TOA Total vs. No black carbon

TOA global annual DRF is approximately zero.

... but is the absorption part of AOD abnormal?

0.90

Measured SSA

c

0.95

→ reasonable representation of hygroscopicity and refractive indices

0.90

d

0.95

Measured SSA

1.00

Assumptions influencing aerosol absorption...

TEST	CAM-Oslo DRF at TOA (W m ⁻²)
Standard set-up	0.031
BC assumed externally mixed	-0.175
No OM absorption assumed	-0.018
No primary BC(ac) emitted (all in Nucleation / Aitken)	-0.021

Assuming external mixing has implications for radiative forcing and hence also for climate impacts of BC (and possibly absorptive dust)

Direct radiative forcing TOA Standard vs. External mixture

Absorptive optical depth *10³ external mixture (0.0034)

Single scattering albedo, external mixture

Summary on DRF:

·Slightly positive direct aerosol forcing

- -Internal mixing increases absorptivity non-linearly
- -Emitted BC-fractals (fluffy particles) from fossil fuel combustion
- -Biomass burning OM and BC emitted internally mixed.
- -Surface albedo and ABL cloudiness

Call for measurements:

- Aerosol absorption optical depth
- Mixing state
- Optical depth over clouds, in particular absorption
- Albedo
- Models calculate "correct" AOD but miss aerosol components/processes
 - "constraining" bulk quantities should be avoided

Extra Slides

NH NH

Aerosol column burdens:

Fig. 13. Modelled and measured aerosol optical depth at 550nm (solid lines and black bullets) and Ångström exponent (ANG) (dashed lines and open squares) for a selection of AERONET stations for the period 1996–2002.

Fig. 10. Measured mean (solid lines), measured median (dash-dotted lines), and modelled mean (dashed lines) aerosol number concentrations for three flight measurement campaigns in the year 2000 over INCA-SH (Chile), INCA-NH (Scotland) and UFA-Export (Central Europe). Data are taken from Stier et al. (2005).

CAM-Oslo surface albedo is large at high latitudes and in some mid-latitude areas

Ångström parameter:

$$ANG = \frac{\ln AOD_1 - \ln AOD_2}{\ln \lambda_2 - \ln \lambda_1}$$

 $λ_1$ =0.55 μm $λ_2$ =0.865 μm

(indicator of dominant aerosol sizes)

 \rightarrow slight over-representation of large (relative to number of small) particles in CAM-Oslo

Direct radiative forcing TOA Total vs. Sulphate only

Top Of the Atmosphere: +0.03W/m²

Sulphate only: -0.34 W/m²

TOA global annual DRF is approximately zero.

Summary on DRF:

·Slightly positive direct aerosol forcing

-Internal mixing increases absorptivity non-linearly

- -Emitted BC-fractals (fluffy particles) from fossil fuel combustion
- -Biomass burning OM and BC emitted internally mixed.
- -Surface albedo and ABL cloudiness

Challenges :

- AOD ~10-25% underestimated \rightarrow Missing aerosols
 - Non-desert mineral dust
 - Nitrate
 - Increased importance as sulphate emissions decrease
 - Anthropogenic SOA (+ some natural)
 - Speciation w.r.t. hygroscopicity and absorptivity
 - Bio-aerosols

Models calculate "correct" AOD but miss aerosol components/processes

- "constraining" bulk quantities should be avoided