Sensitivity of Climate Forcings to Aerosol Physics and Chemistry

> Susanne Bauer NASA GISS & Columbia University

Collaborators: D. Koch and A. Lacis (GISS) & R. McGraw, E. Lewis and S. Schwartz (BNL)

Climate Forcing Uncertainties

- AEROCOM*: Large diversities among models: Improved representation of processes necessary, especially regarding the fine aerosol composition
- This study: Range of uncertainties involving microphysical processes within one model

* Textor et al, ACP 2006, Kinne et al. ACP 2006, Schulz et al. ACP 2006

GISS GCM

GISS climate model (modelE) *Schmidt et al. 2006* Fully coupled ocean-atmosphere climate model Including gas and aerosol phase chemistry

Experimental set up: 4° x 5° horizontal res. 23 vertical layers

Model results: 5 year average

MATRIX

Aerosol Microphysical Model based on the Methods of Moments Bauer et al. ACP 2008

Partitioning of semi volatile species: EQSAM 3 (Metzger et al. 2006)
Droplet activation: Abdul Razzak and Ghan(1998, 2000)

MATRIX

Aerosol Microphysical Model based on the Methods of Moments Bauer et al. ACP 2008

population description	symbol	constituents other than NH_4^+
		NO_3^- , and H_2O
sulfate Aitken mode	AKK	SO_4^{2-}
sulfate accum. mode	ACC	SO_4^{2-}
dust accum. mode (\leq %5 inorg.)	DD1	mineral dust, SO_4^{2-}
dust accum. mode (>%5 inorg.)	DS1	mineral dust, SO_4^{2-}
dust coarse mode (\leq %5 inorg.)	DD2	mineral dust, SO_4^{2-}
dust coarse mode (>%5 inorg.)	DS2	mineral dust, SO_4^{2-}
sea salt accum. mode	SSA	sea salt, SO_4^{2-}
sea salt coarse mode	SSC	sea salt, SO_4^{2-}
OC	OCC	OC, SO_4^{2-}
BC (\leq 5% inorg.)	BC1	BC, SO_4^{2-}
BC (5-20% inorg.)	BC2	BC, SO_4^{2-}
BC (>20% inorg.)	BC3	BC, SO_4^{2-}
BC-mineral dust	DBC	BC, mineral dust, SO_4^{2-}
BC–OC	BOC	BC, OC, SO_4^{2-}
BC–sulfate	BCS	BC. SO_4^{2-}
mixed	MXX	BC, OC, mineral dust,
		sea salt, SO_4^{2-}

Nucleation

Kulmala et al 2004 :'The formation rate of 3 nm particles during regional nucleation events lies typically in the range 0.01-10 particles cm⁻³ s⁻¹ in the boundary layer. In coastal environments and industrial plumes, however, formation rates as high as $10e^4-10e^5$ particles cm⁻³ s⁻¹ have been reported.'

	Scheme	Author	Nucleation rate [s-1]	New Particle Formation Rate * at 3 nm [cm-2 s-1]
1	Ternary H2SO4- NH3 -H20	Napari et al (2002)	1.08e+4	6590
2	Binary H2SO4 - H2O	Jaecker-Voirol and Mirabel (1989)	4.88e+3	2263
3	Binary H2SO4 - H2O	Vehkamaki et al (2002)	1.21e+3	713
4	Fit to observation	Eisele and McMurry (1997)	1.5e-4	4
5	No Nucleation		0	0

* Transformation of nucleation rate into new particle formation rate after Kerminen et al. 2004 and Bauer et al. 2008 ACD

Nucleation

Kulmala et al 2004 :'The formation rate of 3 nm particles during regional nucleation events lies typically in the range 0.01-10 particles cm⁻³ s⁻¹ in the boundary layer. In coastal environments and industrial plumes, however, formation rates as high as $10e^4-10e^5$ particles cm⁻³ s⁻¹ have been reported.'

	Scheme	Author	Nucleation rate [s-1]	New Particle Formation Rate * at 3 nm [cm-2 s-1]
1	Ternary H2SO4- NH3 -H20	Napari et al (2002)	1.08e+4	6590
2	Binary H2SO4 - H2O	Jaecker-Voirol and Mirabel (1989)	4.88e+3	2263
3	Binary H2SO4 - H2O	Vehkamaki et al (2002)	1.21e+3	713
4	Fit to observation	Eisele and McMurry (1997)	1.5e-4	4
5	No Nucleation		0	0

* Transformation of nucleation rate into new particle formation rate after Kerminen et al. 2004 and Bauer et al. 2008 ACD

Number Concentrations [#/cm³]:

Black Carbon Mixing State

CCN Number concentrations [column cm⁻³]

5.6 % more activated particles through nucleation

• 5.3 % more CCN through binary nucleation, *Wang and Penner 2008 ACPD*

Why not larger? Competition for sulfuric acid gas and ammonia between nucleation and primary particles.

 $CCN \rightarrow activated particle \rightarrow CDNC$

Table 3.	Particle	Size	Distributions	Observed	at	Combustion	Sources ^a

			CMD,	MMD,		
Combustion Source	Fuel	Measurement	nm	nm	GSD	Citation
		Middle-Dist	illate Vehici	05		
Two heavy-duty trucks	diesel	EAA	100	200	1.6	Hildemann et al. [1991]
One vehicle ^{h,c}	diesel	SMPS	70-76	150 - 220	1.6 - 1.8	Marica et al. [1999]
Automobile, light truckb,c	diesel	SMPS	63-82	130 - 320	1.6 - 2.0	Marica et al. [2001]
Four vehicles ^{b,c}	three diesel.	SMPS, MOUDI	22 - 83	80 - 270	1.7 - 2.0	Rogers et al. [2003]
	one JP8					
Three vehicles, two engineshe	diesel	SMPS	60 - 120	130 - 170	1.4 - 1.7	Harris and Maricq [2001]
Four military vehicles ^{b,e}	diesel	SMPS	29 - 88	38 - 170	1.3 - 1.6	Kelly et al. [2003]
		Links Distil	lata Vahiala			
Catalytic vahicles	gasoline	E A A	17A	s 200	1.2	Hildomann et al [1991]
Noncatalutic vehicles	gasoline	FAA	18	100	1.2	Hildemann et al. [1991]
Fight tracks 11 autos (one DI)	gasoline	SMPS	67 ± 17	250 + 260	18 ± 0.4	Marica et al [1991]
three FTP phases each ^b	, gasorine	SIVIE 5	0/ ± 1/	250 ± 200	1.0 ± 0.4	marieq et al. [1999]
Three vehicles, one engine ^{h,e}	gasoline	SMPS	20	40	1.6	Harris and Marica [2001]
One DI engine ^{h,c}	gasoline	SMPS	50-150	470-1500	2.4	Harris and Marica [2001]
One truck ^{h,c}	gasoline	SMPS	20 - 50	20-170	1.2 - 1.9	Marica et al. [2001]
One vehicle ^{b,c}	gasoline	SMPS, MOUDI	18	25	1.6	Kelly et al. [2003]
Three catalytic vehiclesh,e	gasoline	OPC, DMA, MOUDI	100	150	1.5	Kleeman et al. [2000]
		Small Solid E	al Combu			
Einen laga h,d	mod (ning out	Small Solia Fi	70 110	150 200	15 17	Floom on at al [1000]
ritepiace	wood (pine, oak, eucalymtus)	MOODI	/0-110	150-200	1.5-1.7	Kleeman et al. [1999]
Firanlace steady state ^{b,d}	wood (nine_oak)	FAA	19-30	100	18-21	Hildemann et al. [1991]
Cooking stoves ⁶	acacia wood	MOUDI	120-600	470 - 780	1.3-2.0	Venkataraman and Rao [2001]
Cooking stoves ^o	dried cattle manure	MOUDI	270-600	600-780	1.3 - 1.7	Venkataraman and Rao [2001]
Heating and cooking stoves ^{c,e}	coal briquettes	DMPS	5		2.6	Bond et al. [2002]
Heating and cooking stoves ^{c,e}	bituminous coal	DMPS	25		3.0	Bond et al. [2002]
Heating and cooking stoves ^{c,e}	lignite	DMPS	81		2.2	Bond et al. [2002]
Cooking stoves ^d	wood, two burn rates	MOUDI	60-550	420-1050	1.6 - 2.2	Habib (2006)f
Crop waste, three types ^d	wood, two burn rates	50 - 1000	440-1300	1.3 - 2.4	crop waste, three types	Habib (2006)f
Dried cattle manured	wood, two burn rates	250	860	1.9	dried cattle manure	Habib (2006) ^f
		Z	c			
Industrial boiler	fivel oil	EAA	nary Sourc	es 50	17	Hildomann et al [1000]
Small industrial hoiler ^{og}	lignite Aitken	TDMA	48-53	74-70	1.7	Wahner at al [1999]
Small industrial boiler®	lignite, Artken	TDMA	280-400	540-780	1.4-1.5	Wehner et al. [1999]
Einstuke hoiler ^{b,d,h}	ngine, accuii	SMDS	200-400	70	14-15	Miller et al. [1999]
GE fuel evaluation facility ^{e,i}	coal	SMPS	40-71	60-140	1.5-1.7	Chang et al. [1990]
GE fuel evaluation facility ^{c,i}	fuel oil	SMPS	80-100	120-150	1.0 -1.7	Chang et al. [2004]
Small industrial boiler ^{eg}	natural gas. Aitken	TDMA	40-59	113 - 166	1.8	Bond et al. [2004]
Same study	accumulation mode	TDMA	200	380 - 480	1.6-1.7	Same as above
Small industrial boiler	fuel oil. Aitken	TDMA	35-60	70 - 170	1.4 - 1.6	Bond et al. [2006]
Same study	accumulation	TDMA	89-200	120 - 390	1.4 - 1.6	Same as above

^aCMD is count median diameter, MMD is mass median diameter, and GSD is geometric standard deviation. Abbreviations: DI, direct injection; DMPS, differential mobility particle sizer; EAA, electrical aerosol analyzer; FTP, federal testing protocol; MOUDI, micro-orifice uniform deposition impactor; OPC, optical particle counter; SMPS, scanning mobility particle sizer.

^bGSD is calculated from graph.

°MMD is calculated using equation in text.

^dCMD is calculated using equation in text.

"GSD is given for averaged distribution, so no MMD was calculated.

Bond et al JGR 2006

Emission Size Uncertainty Experiments

(AEROCOM emission size range* [<i>Textor et al. ACP 2006</i>] :	
	SU: sulfate: 0.13 - 0.6 μm BC: black carbon 0.025 - 0.6 μm OC: organic carbon 0.03 - 0.8 μm	*emissions may be distributed over several size-bins / modes or differ between source sectors

Sizes of the emitted particles [µm]

Mass median diameters of log normal distributions

	Accum	ulation mode en	Several modes			
	SU	BC	OC	SS	DU	
BASE	0.068	0.03 fossil 0.037 bio	0.03 0.037	0.2 - 4.	0.3 - 6	
C1	BASE	BASE	BASE	2xBASE	2x BASE	
F1	0.07	0.07	0.1	BASE	BASE	
F2	0.3	0.3	0.3	BASE	BASE	
F3	0.6	0.6	0.6	BASE	BASE	d

Note! Just emission sizes. Ambient particle sizes letermined by microphysics

Aerosol Optical Thickness

CCN Number concentrations [column cm⁻³]

Aerosol Optical Thickness versus ACTIVATED aerosol numbers

★ Kinne et al. 2006 ACP

Summary

Nucleation:

- The quantification of new particle formation through nucleation events is still an open research question. Nucleation events greatly impact aerosol size distributions and mixing state.
- The impact of nucleation on activated particle number concentrations is estimated here (comparing two extreme cases) to be about 5%.

Emission size information:

- Our experiments demonstrate that the entire AOT diversity of the AeroCom models can be reproduced by our model simply by changing the sizes of emitted particles.
- AOT and activated particle number concentrations may vary by up to 100%, comparable to the range of uncertainty of the direct and the indirect aerosol forcing.

- Observations of aerosol size distributions and mixing state needed!

Acknowledgements

This work has been supported by the NASA MAP program Modeling, Analysis and Prediction Climate Variability and Change (NN-H-04-Z-YS-008-N).

Work at Brookhaven National Laboratory was supported in part by the U.S. Department of Energy's Atmospheric Science Program (Office of Science,OBER) under Contract No. DE-AC02-98CH10886.