Parameterized aerosol optics and cloud droplet properties in CCM-Oslo.

Alf Kirkevåg, Trond Iversen, Øyvind Seland and Jón Egill Kristjánsson

MetOs section, Department of Geosciences, University of Oslo

4'th AeroCom workshop in Oslo, June 15-17'th, 2005.

Outline

CCM-Oslo (in Aerocom B & Pre)

- parameterizations of aerosol optics and cloud droplet properties
- OD comparison with satellite and AERONET retrievals
- simulated cloud droplet properties and indirect forcing
- CCM-Oslo vs. CAM-Oslo (preliminary results)
 - prescribed -> prognostic mineral & seasalt aerosols
 - effect of assumed modal radii on mass extinction coefficients (MEC)
 - direct forcing estimates
- Some conclusions

CCM-Oslo: NCAR CCM3.2 (T42, L18) extended with:

- Prognostic cloud water: Rasch P. J., and Kristjánsson, J. E., 1998. J. Climate, 11, 1587.
- Aerosol life-cycle: Iversen, T., and Seland, Ø., 2002. J. Geophys. Res., 107 (D24), 4751.

+ Revised convective transport and deposition (Seland & Iversen, 2005, paper in prep.)

 Direct effect, aerosol size distributions and optical properties: Kirkevåg, A., and Iversen, T., 2002. J. Geophys. Res., 107 (D20), 4433.

Indirect effect: Kristjánsson, J. E., 2002. *J. Geophys. Res*., **107** (D15), 4246.

+ Revised schemes for aerosol optical parameters and cloud condensation nuclei in CCM-Oslo: Kirkevåg, A., Iversen, T., Seland, Ø., and Kristjánsson, J. E., 2005. Institute technical report, No. 128. (http://folk.uio.no/kirkevag/instrep128_Kirkevag-etal.pdf)

CDNC (cm⁻³)

Effective droplet radii, r_{eff} (µm), as seen from satellite

CDNC (cm⁻³) η = 0.87

Effective droplet radii, r_{eff} (µm) n = 0.87

SWCF (W/m²) due to SO4, OC & BC

Model development after AerocomB:

CCM-Oslo (T42, L18) $\rightarrow CAM-Oslo$ (T42, L26)

AEROCOM B emissions of SO_4 , BC and OC

AEROCOM B emissions of SO₄, BC and OC, + sea-salt and minerals, all prognostic

AeroCom B and Pre version

CCM-Oslo vs. CAM-Oslo

Near surface Single scattering albedo, $\omega_{0.55 \mu m}$

CAM-Oslo

Near surface Single scattering albedo, $\omega_{0.55 \mu m}$

(preliminary result: no adjustments/tuning of parameterizations chemes to new background aerosol)

Mass/specific extinction coeff. (m^2/g) at 0.55µm

MEC550 = OD550/(dry mass column)

Mass/specific extinction coeff. (m^2/g) at 0.55µm

MEC550 = OD550/(dry mass column)

MEC550 (m²/g)

Component	CCM-Oslo, Aerocom B → CAM-Oslo	Median of AeroCom A*
Mineral	1.1 → 0.70	0.91
Sea-salt	7.5 → 1.9	2.4

* Kinne et al. (2005)

CCM-Oslo

MEC550 (m²/g)

CAM-Oslo

MEC550 (m²/g) CCM-Oslo (in AeroCom B)

CAM-Oslo

Some conclusions

- Prognostic SO₄, BC & OC + prescribed background aerosols in CCM-Oslo yield reasonably good agreement with yearly MODIS and AERONET ODs, but
 - too small mineral OD downstream of e.g. Sahara
 - too thick mineral OD over Europe and other "remote" areas
- Radiative forcing by SO₄, BC & OC (aerocom B-Pre):
 - DRF(TOA) = -0.01 W/m², DRF(S) = -0.84 W/m²
 - INDRF(TOA) = 1.1 W/m²

	Aerocom Pre	Aerocom B
CDNC(n=0.87)	82 cm ⁻³	115 cm ⁻³
R _{eff} (η=0.87)	9.79 µm	9.15 µm

Some more conclusions

- High sea-salt and dust MEC550 values in CCM-Oslo, a result of prescribed background with weight on fine part:
 CAM-Oslo: prognostic seasalt and mineral with Aerocom's modal parameters (weight on larger sizes)
 → MEC550 near meadian of Aerocom A
- Unexpected side-effect of fully prognostic aerosol in CAM-Oslo
 - Despite more realistic distribution of sea-salt and minerals, we get unrealistic small SO₄, OC and BC MEC550, due to a shift towards <u>larger sizes for internal mixing</u>
 - \rightarrow too small ODs!
- Work in progress (in CAM-Oslo):
 - Revision of aerosol scheme w.r.t. internal vs. internal mixing of modes (→ more external) and sizes, to get more realistic mass loads, MECs and ODs for SO₄, OC and BC.

Extra slides

Revised background aerosol modes, mass densities and dry modal parameters

mode number k, and name	modal radius, r _k (μm)	modal width, log(σ _k)	mass density, ρ _k (g/cm³)	references
1. WASO*	0.0212	0.35	1.8	GADS
2old. INSO* 2new. MINSEA	0.471 0.0931	0.40 0.1975	2.0 2.5	GADS (MINF+SEASF)
3. MINF	0.088	0.1824	2.6	DO2, GADS
4. MINC	0.83	0.2649	2.6	DO2, GADS
5. MINT	0.64	0.2610	2.6	DO2, GADS
6. SUSO	0.0695	0.3075	1.7	GADS
7. SEASF	0.05	0.2476	2.2	S03, HF90
8. WASOC*	0.0212	0.35	1.5	GADS, Gh01, AERONET
9. SEASA	0.209	0.3075	2.2	GADS
10. SEASC	1.75	0.3075	2.2	GADS

GADS refers to Köpke et al. (1997), DO2 to Dubovik et al. (2002), GhO1 to Ghan et al. (2001a), HF90 to Hoppel and Frick (1990), SO3 to Smirnov et al. (2003), and AERONET to http://aeronet.gsfc.nasa.gov/.

Aerosol background modes and number concentrations

aerosol type	modes included	surface number concentrations, N _k (cm ⁻³)	vertical variation p _t /p ₀ , q _{lower} , q _{upper}	references
Continental	3. MINF 4. MINC 5. MINT	700 or 350 0.2 or 0.1 0 or 0.4	0.8, 5.0, 2.0	GADS, D02, SP98
Marine	5. MINT 7. SEASF 9. SEASA 10. SEASC	0.05 200 0.4 · exp(0.18·U ₀ +1.4) 0.4 · exp(0.23·U ₀ -7.8)	0.8, 8.0, 2.0	GADS, D02, HF90,Gh01, Go97, M03, SP98, S03
Desert	3. MINF 4. MINC	2000 · fdes† 12 · fdes†	0.5, 4.0, 1.0	GADS, D02, Gi01, Ch02
Arctic	3. MINF 9. SEASA	20 0.2-1.0*	0.8, 0.0, 1.0	GADS, AERONET
Antarctic (at the south pole only)§	5. MINT 7. SEASF 9. SEASA	0.00025 2.5 0.1	0.3, 0.0, 1.0	GADS, Sh82, AERONET, Seland & Iversen (Pers. Comm.)
Stratospheric	6. SUSO	10	q = 1 for p/p ₀ ≤0.2	GADS

GADS refers to Köpke et al. (1997), DO2 to Dubovik et al. (2002), HF90 to Hoppel and Frick (1990), Gh01 to Ghan et al. (2001b), Go97 to Gong et al. (1997), M03 to Myhre et al. (2003), SP98 to Seinfeld and Pandis (1998), S03 to Smirnov et al. (2003), Gi01 to Ginoux et al. (2001), Ch02 to Chin et al. (2002), Sh82 to Shaw (1982), and AERONET to its project home page at http://aeronet.gsfc.nasa.gov/.

Externally mixed modes of Sulfate, BC and OC

mode number k, and name	modal radius, r _k (µm)	modal width, log(σ _k)	mass density, ρ _k (g/cm³)	references
11. H ₂ SO ₄ (n)	0.0118	0.301	1.8	
12. BC(n)	0.0118	0.301	2.0	
13. BC(a)	0.1	0.204	ρ _{BC} (r _n /r) ^{0.5}	
14. OC(n)	0.0118→0.04	0.301→0.2553	1.5	GADS, Gh01

CAM-Oslo

Number size distributions for clean background aerosols, dN/dlogr

Volume size distributions for clean background aerosols, dV/dlogr

Sulfate load (2.61 mg/m² vs. 2.9) CAM-Oslo OC load (1.52 mg/m² vs. 1.7)

Mineral OD550 (0.025 vs. 0.051) Sea-salt OD550 (0.049 vs. 0.066)

