Global Aerosol Model Tested Against Surface Observations : Revisit of model validations

Sarah Guibert¹, Michael Schulz¹, Christiane Textor¹, Stefan Kinne² ¹Laboratoire des Sciences du climat et de l'Environnement, Gif-sur Yvette, France ²Max-Planck-Institut für Meteorologie, Hamburg, Germany

4th AeroCom workshop, Oslo, June 15-17, 2005

SURFOBS web interface

http://nansen.ipsl.jussieu.fr/AEROCOM/DATA/surfobs.html

Types of graph producted

Post-processing of model output

Horizontal interpolation :

Model output interpolated to stations locations

Daily filtration :

Daily data => Model data filtering according to observations

If at least 8 days in a month with data => Monthly mean (use for timeseries and scatterplots)

If at least 3 months in a year with data => Yearly mean (use for Map anf Fieldcompa)

Rejection of « mountain » sites for surface comparison

-> some mountains remain in the comparison if models put ground level at the correct altitude exemple :

Features (1)

SERIES : time series at each station

SCONCD : use of surface daily concentration => Daily filtration + no mountain sites

CONC3D : use of 3D monthly concentration => interpolation of modeled data to the grid box containing the altitude of the station

MAP : comparison model/obs at each station

Yearly mean values

Features (2)

SCAT : scatterplot between model and obs

Use of the monthly mean values at each station

FIELDCOMPA: FIELD + superposition of obs value at each station

Yearly mean value

Model output + data at surface

Exists for each month + seasonal average

Features (3)

Synthesis graphs

on http://nansen.ipsl.jussieu.fr/AEROCOM/DATA/synthesis.html

SURFOBS : comparison of mean model/data values

SCATCOEF : comparison of slope and regression coef

SO_4 concentration (1)

Experiment A

BE CAREFUL WITH THE VALUE OF THE SLOPE !!

Experiment A

SO_4 concentration (2)

Overestimation over Europe and North America

SO_4 concentration (3)

Experiment A

SO_4 concentration (4)

Experiment A

Comparison of precipitation in (mm/day)

Lack of precipitation => too much sulfate concentration

SO_4 concentration (5)

For all models, decrease of CONC 3D_SO4

SO_4 concentration (6)

Decrease of concentration over Europe, during the summer

Sea Salt concentration (1)

6666

Experiment A

Overestimation by all models for 2000 (except MOZGN)

Sea Salt concentration (2)

Experiment A

Too few stations, on the continent => Bias when comparison to data

Overestimation by all models → partially due to cut off size in the measurements models with larger particles

Sea Salt concentration (3)

Larger overestimation with expB

Clim, year 9999

Sea Salt concentration (4)

OC concentration (1)

2000

year

Nudged,

6666

year

Clim,

Experiment A

Underestimation by all models except GOCART, MPI_HAM (agreement) and KYU, MOZGN and ULAQ (overestimation)

Experiment A

All stations in North America (IMPROVE)

OC concentration (3)

Experiment A

OC concentration (4)

Better agreement for expB except clim models

Clim, year 9999

OC concentration (5)

POM emissions decrease with expB \Rightarrow concentrations decrease ???

see exemple of KYU (and MOZGN)

For other models, conc decrease around the world but increase in AMN

OC concentration (6)

Decrease in Europe explain fewer agreement for clim models

DUST concentration (1)

Experiment A

Only clim comparison : clim models + average of nudged models over the available years (+ year 2000 for MPI_HAM, CAM, UMI, UIO_CTM)

Slope values can't be considered : big range of data with lots of small values and some very large values

DUST concentration (2)

Experiment A

DUST concentration (3)

Experiment A

UIO_CTM transports DUST much more than KYU (EMI located over AFN for both)

DUST concentration (4)

Decrease of all mean and median values except MATCH and UMI

OD550 (1)

Experiment A

Variability not so large between all models (except clim) / Specific problems Smaller correlation values for clim models

0.005

0.000

-180.

180.

UIO_GCM, 9999

60.

120.

-120.

0.005

0.000

180.

UIO_CTM, 2000

50.

120.

-180.

-120.

-50.

OD550 (3)

MODIS/MISR versus Aeronet

Overestimation by MODIS over the continents Better correlation between AERONET and MODIS data

MISR

Experiment A

OD550 (4)

Experiment A

MODIS/MISR

OD550 (5) Exemple of LOA and LSCE Experiment A

Less agreement with AERONET for INCA : problematic regions seem to be AFN and tropical band

OD550 (6) Exemple of LOA and LSCE

Experiment A

120.

OD550 (7)

666

0

year

Clim

The spread of values decreases for each model with expB

OD550 (9) Exemple of UIO_CTM and UMI

OD550 (9)

OD550LT1 (1)

Experiment A

Small overestimation by all models, except PNNL. Clim models have smaller correlation coefficient.

OD550LT1 (2)

Experiment A

Only 3 months of data ⇒ not considered for yearly mean calculation and scatterplot

OD550LT1 (1)

Decrease of OD550LT1D between expA and expB.

We see for OD550 that values decrease in Europe and in Asia : locations of small particules => OD550LT1D decrease

OD550LT1 (1)

0.

50.

120.

-50.

-120.

Angström coefficient (1)

2000

year

Nudged

6666

year

Clim,

Experiment A

Underestimation by most models in 2000 + UMI & MOZGN : problems

Angström coefficient (2)

Experiment A

hitoontomobility none soos

Angström coefficient (3)

Angström coefficient (4)

Decrease of angstrom component in Europe, AMS, AFS

Conclusion

Surface observations

Models / measurements comparisons : collection of observational data (from web sites) EMEP SS and SO4 conc Europe - until 2000 - 32 stations **IMPROVE** : BC, OC, SS and SO4 concentration North America - 1996 to 2002 - 26 stations GAW SS and SO4 concentrations 5 stations - 1996 AIRMON SO4 concentration 2 stations - 1996&1997 Paul Scherrer Institute : BC conc 3 stations - 96 to 2001 AERONET OD550 and Angstrom coefficient 98 stations - 1996 to 2001 (1998 to 2001 for Angstrom) model output to 166 station locations • analysis of time series, global maps, scatter plots and synthesis graphs

Experiment A

OD550

OD too small over land : especially AMN (during summer) and AMS (during winter)

BC concentration (1)

6666

Clim, year

Experiment A

Same as OC conc : underestimation by all models except KYU and MOZGN

BC concentration (4)

In general, better agreement with expB

Clim, year 9999

