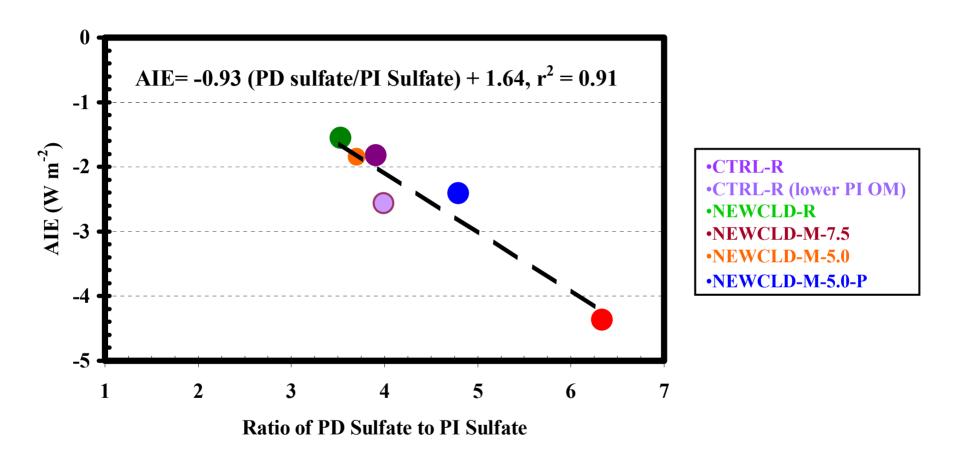
JRC AeroCom Meeting Ispra, March 12, 2004

AEROSOL-CLOUD INTERACTIONS

TOPICS

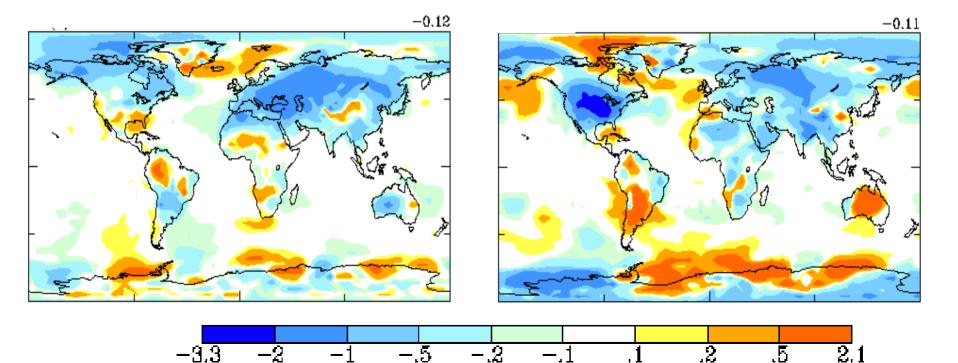

- Current uncertainties in the indirect effect
- **Process treatments**
- Climate impacts

What are the sources of uncertainty when representing the aerosol indirect effects?

- Background/total aerosol burdens
- Aerosol solubility/mixing state, size distribution
- Aerosol Cloud droplet number relationship
- Aerosol/cloud vertical distribution
- Precipitation parameterization
- Dynamical effects, Associated feedbacks

Indirect Effect (IE) and Climate Forcings

IE is comparable to GHG forcing but highly uncertain. Our estimate $IE = -1.1 \text{ to } -2.8 \text{ W m}^{-2}$ (a) 1850-2000 2 1.4 ± 0.2 Black Volcanic Carbon Aerosols 0.7±0.2 1 (range of 0.5±0.2 CFCs Land Forced N₂O 0.4 ± 0.2 decadal 0.35 ± 0.05 Cloud Reflective Soil Cover $F(W/m^2)$ 0.15±0.05 mean) Changes Alter. Aerosols Dust + Sun CH₄ CO, Tropo- 0.8 ± 0.4 -0.1 ± 0.1 -0.1 ± 0.2 spheric -0.2 ± 0.2 (0.2, -0.5) ←Sulfate Ozone ←Organic -1 -1^{+0.5} < Nitrate (indirect (indirect via (indirect via (semi-direct. 0, & H,O) stratospheric dirty cloud & via O₃) snow effects) ozone) -1.3 ± 0.5 -2 $IE = -0.67 W m^{-2}$ (b) 1950-2000 2 Volcanic Aerosols 0.9 1 (range of Forced Land **CFCs** decadal Soil Cover $F(W/m^2)$ 0.4 0.35 N₂O Black Reflective Cloud mean) Carbon Aerosols 0.15 Dust Changes Alter. Sun 0.09 CO₂ CH₄ -0.1 Tropo-0.14 0 0 0 0 spheric -0.40 (0.2, -0.5)Ozone Sulfate (indirect via (indirect via -1 Organic O2 & H2O) stratospheric (Hansen et al. 2002) ozone) Tropospheric Aerosols -2 → **k** Other Anthropogenic Forcings ≯ ← Natural Forcings → Greenhouse Gases

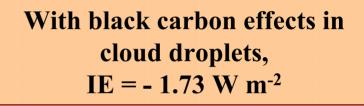

Annual surface temp. changes(K) from 1850 to present

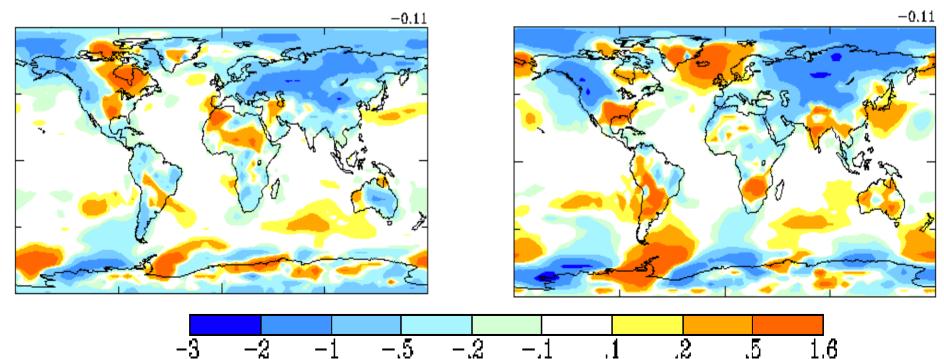
Sensitivity to background concentrations

N (cloud droplet number concentration) = f(aerosol mass [Menon et al. 2002], cloud turbulence and cloud cover)

Nmin=10 cm⁻³, IE= -2.1 W m⁻²

Nmin=40 cm⁻³, IE= -1.1 W m⁻²




Annual surface temp. changes(K) from 1850 to present

Sensitivity to black carbon absorption

N=f(aerosol number concentration [Gultepe and Isaac, 2000], cloud turbulence and cloud cover)

Without black carbon effects in cloud droplets, IE = - 1.96 W m⁻²

Future Direction

Integration of satellite retrievals, laboratory tests, field programs

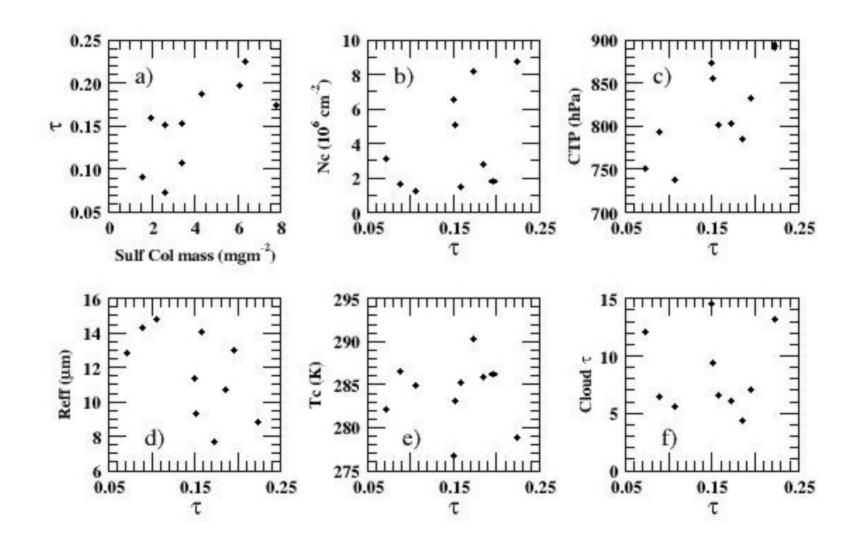
- Optical and physical properties of internally mixed aerosols Logic of separating BC from OC
- Aerosol solubility, Aerosol Distribution horizontal and vertical
- Constraining results over last 20 years
- Sub-grid aerosol properties
- Sub-grid turbulence effects
- Sub-grid Precipitation parameterization
- Decoupling dynamical and feedback effects

GISS GCM vs. ISSCP cloud vertical structure

Freq. of occurrence of low-level cld tops (%) for January							
Ptop (hPa)	964	934	898	860 8	805 54	740	720
CTRL	26 43					31	
ISCCP	7	7	13	18	27	29	
R-18	7	10	30	25	18	10	

Satellite Data

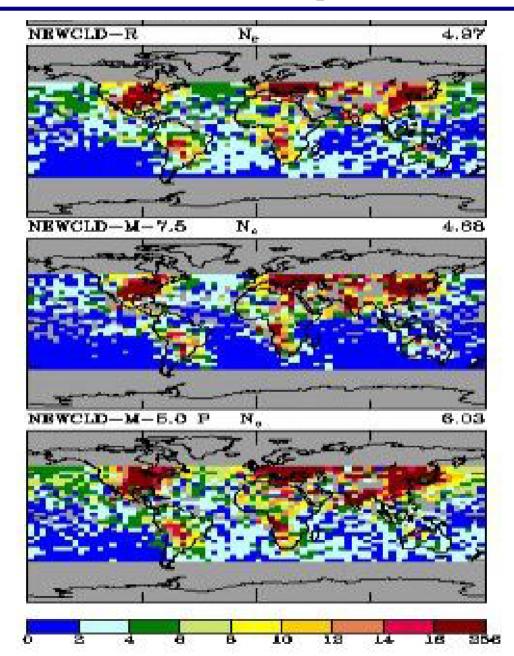
[unitless] (July 2003) Aerosol Optical Thickness



Using satellite retrievals for model simulations

Besides aerosol effects on clouds, cloud properties are controlled by meteorology.Therefore, for similar dynamical regimes one can look at

Scatter plots of aerosol optical thickness versus


- 1. Nc (Col. Droplet Number concentration),
- 2. Cloud droplet radii,
- 3. Cloud top temperatures,
- 4. Cloud top pressure,
- 5. Cloud optical thickness
- 6. Cloud cover

Priorities for indirect effect

- Optical and physical properties of internally mixed aerosols Logic of separating BC from OC
- Aerosol solubility, Aerosol Distribution horizontal and vertical
- Constraining results over last 20 years
- Sub-grid aerosol properties
- Sub-grid turbulence effects
- Sub-grid Precipitation parameterization
- Decoupling dynamical and feedback effects

Model simulated column droplet number (10⁶ cm⁻²)

