Aerosol Assimilation

D. Fillmore, W. Collins, P. Rasch, D. Bundy

AEROCOM Meeting 2004 March 10 – 12 Ispra, Italy

MATCH Model with MODIS AOD Assimilation has been prepared for AEROCOM

Years 2000 and 2001

How does AOD assimilation work?

Assimilation adjusts model aerosol mass so that model AOD more closely matches satellite observed AOD.

 $\tau_{\lambda} = \Sigma_{s} \Sigma_{k} [\Delta p_{k} / g k_{\lambda}(RH)] q_{sk}$

Single wavelength assimilation scales aerosol mass mixing ratios independent of vertical level and species $q_{sk} \implies \alpha q_{sk}$ through *Optimal Interpolation*, with a spatial correlation length of ~ 100 km .

An example illustrates the subsequent model propagation of this mass correction ...

Aerosol Assimilation Example

Saharan Dust Storm March 2, 2003

MODIS AOD at MATCH 1.9° resolution

March 2

MATCH AOD

AOD Difference

MATCH with MODIS Assimilation (on March 2 only)

MATCH

-0.3

1.8

0.9

0

0.3

0

March 3

March 4

1.8

-0.3

March 5

March 6

1.8

-0.3

MODIS Sampling 2001

0.6

0.3

MODIS AOD 2001

Aerosol Optical Depth 2001

MATCH

MATCH with MODIS Assimilation

Aerosol Optical Depth MATCH/MODIS Correlation 2001

5-day running mean

0

-0.3

with Assimilation

AOD Assimilation Correction 2001

AOD Difference

MATCH with MODIS Assimilation -MATCH

December - January - February 2001

March - April - May 2001

June - July - August 2001

September - October - November 2001

Dust Mass Budget

MATCH

Mass ~18.6 TgEmissions ~2.7 Tg day-1Dry Deposition ~ 1.2 Tg day-1Wet Deposition ~ 1.5 Tg day-1

 $\tau \sim 7.0 \ days$

MATCH with MODIS Assimilation

Mass \sim 16.8 TgEmissions \sim 2.7 Tg day⁻¹Assimilation \sim - 0.3 Tg day⁻¹Dry Deposition \sim 1.1 Tg day⁻¹Wet Deposition \sim 1.3 Tg day⁻¹

 $\tau \sim 7.0 \text{ days}$

0.5

g m⁻²

0

Sulfate Mass Budget

MATCH

Mass ~0.6 Tg(S)Emissions ~ $0.005 \text{ Tg(S)} \text{ day}^{-1}$ Gas Phase ~0.02 Tg(S)Aqueous Phase ~0.125 Tg(S)Dry Deposition ~ $0.02 \text{ Tg(S)} \text{ day}^{-1}$ Wet Deposition ~ $0.13 \text{ Tg(S)} \text{ day}^{-1}$

 $\tau \sim 3.9$ days MATCH with MODIS Assimilation

Mass ~0.73 Tg(S)Emissions ~ $0.005 \text{ Tg(S)} \text{ day}^{-1}$ Gas Phase ~0.02 Tg(S)Aqueous Phase ~0.125 Tg(S)Assimilation ~ 0.02 Tg day^{-1} Dry Deposition ~ $0.025 \text{ Tg(S)} \text{ day}^{-1}$ Wet Deposition ~ $0.145 \text{ Tg(S)} \text{ day}^{-1}$

Sulfate Mass

 $g(S) m^{-2}$

()

0.008

Organic Carbon Mass Budget

MATCH

Mass ~1.7 TgEmissions ~ 0.24 Tg day^{-1} Dry Deposition ~ 0.06 Tg day^{-1} Wet Deposition ~ 0.18 Tg day^{-1}

 $\tau \sim 7.2 \ days$

MATCH with MODIS Assimilation

0

Organic Carbon Mass

g m⁻²

Mass ~2.2 TgEmissions ~ 0.24 Tg day^{-1} Assimilation ~ 0.04 Tg day^{-1} Dry Deposition ~ 0.06 Tg day^{-1} Wet Deposition ~ 0.22 Tg day^{-1}

 $\tau \sim 7.6$ days

0.03

Black Carbon Mass Budget

MATCH

Mass ~ 0.19 Tg Emissions ~ 0.03 Tg day⁻¹ Dry Deposition ~ 0.01 Tg day⁻¹ Wet Deposition ~ 0.02 Tg day⁻¹

 $\tau \sim 6.6 \ days$

MATCH with MODIS Assimilation

0

Mass \sim 0.25 TgEmissions \sim 0.03 Tg day⁻¹Assimilation \sim 0.005 Tg day⁻¹Dry Deposition \sim 0.01 Tg day⁻¹Wet Deposition \sim 0.025 Tg day⁻¹

 $\tau \sim 7.1 \text{ days}$

0.003

g m⁻²

Aerosol TOA SW Radiative Forcing (Clear-Sky) from CAM with MATCH/MODIS Aerosol Climatology

Dust

Carbon

W m⁻² -10.0

Sulfate

Sea-Salt

Global Mean TOA Aerosol Forcing

Conclusions

Aerosol assimilation constrains the model with satellite observations and may thus lead to more accurate estimates of direct radiative forcing.

A multi-wavelength assimilation can in principal adjust the relative speciation of aerosols. However this inversion is ill-conditioned, which limits the number of groups of species that can be adjusted (~ 2), and is highly sensitive to the spectral dependence of the underlying optical models.

□A new MATCH/MISR assimilation dataset is being developed...