GLOMAP: A Global Model of Aerosol Processes

Ken Carslaw, Dominick Spracklen, <u>Kirsty Pringle</u>, Martyn Chipperfield, Graham Mann

Institute for Atmospheric Science University of Leeds, UK

Funded by NERC (UGAMP)

- Motivation for development
- Model description
- Comparison with observations
- Future Applications

GLOMAP: A Global Model of Aerosol Processes

Motivation for Development

Introduction to GLOMAP

Aerosol Size Distribution

- Two moment scheme: aerosol number and mass
- Variable number of geometrically spaced bins
- > Moving centre, fixed grid (Jacobson, 2000)
 - Bin edges are fixed
 - Bin centre moves to represent average mass

Introduction to GLOMAP

Aerosol Composition

- Currently carry sulfate and sea salt in a single distribution
 - Baseline model: compare with other schemes
- Aim to have a multi-component version by summer 2004, including:
 - Sulphate
 - Sea salt
 - Dust
 - Black and organic carbon

TOMCAT

•3D Offline CTM •Forced by ECMWF Winds

- •Convective transport
- Convective and resolved rain

GLOMAP

Aerosol size spectrum (~ 1 nm – 24 μm)

•Anthrop + volcanic SO₂

•DMS emissions from wind stress and DMS sea surface

Sea salt aerosol generation

•8 sulphur species, 8 sulphur

Aqueous phase chemistry

•Oxidants from full chemistry run

Sulphur Chemistry

Emissions

emissions

function

reactions

concentration

Microphysics

Nucleation and Condensation •Binary H₂SO₄/H₂O nucleation •Condensational growth

Coagulation •Semi implicit fast numerical solution

Hygroscopic Growth

•Equilibrium size given by solution of Kohler equation

Dry Deposition

Dry deposition of aerosol

Clouds •Convective and frontal rain •In-cloud nucleation scavenging •Below cloud scavenging •ISCCP observed low-level clouds for cloud processing

Removal

Spin-up from an **aerosol-free** atmosphere

After 30 model days particle tracer mass is independent of the number of days after initiation

- October 1995 (after 1 month spin up)
- T42 resolution (2.8° x 2.8°), 31 vertical levels
- Sulphate and sea salt aerosol only
- > 20 aerosol bins (2 nm 25 μ m)

Sulphur Species (Surface)

Aerosol Spatial Distribution (Surface)

500

250

100

50 25

10

5 2

0.5

2-10 nm

Nucleation Mode

Accumulation Mode

Aitken Mode porticles/cm-3 20

Coarse Mode

Aerosol Spatial Distribution (Profile)

Size Distributions: Remote N. Atlantic

Aerosol Size Distributions

Average spectra over sampling sites, 15th November – 15th December 1995

- 1. Understanding of natural and perturbed size and composition resolved global aerosol lifecycle
 - Routes to CCN formation + sensitivities
 - Link to cloud models
 - Aerosol interactions (e.g., BC+sulfate)
 - Fate of anthropogenic sulphur

The Fate of Anthropogenic Sulfur

GLOMAP Applications

- 1. Understanding of natural and perturbed size and composition resolved global aerosol lifecycle
 - Routes to CCN formation + sensitivities
 - Link to cloud models
 - Aerosol interactions (e.g., BC+sulfate)
 - Fate of anthropogenic sulphur

Baseline model for development of GCM aerosol schemes – process reduction NCAS collaboration

The NCAS collaboration

The Remit: To develop an aerosol module to be implemented in the UK Met Office Unified Model

The Plan:

- Graham Mann: 3 year post-doctoral position
- Incorporate the existing UM sulfate/sea salt scheme into GLOMAP and compare
- Incorporate modal microphysical scheme into GLOMAP (evaluate against GLOMAP and observations)

GLOMAP Applications

- 1. Understanding of natural and perturbed size and composition resolved global aerosol lifecycle
 - Routes to CCN formation + sensitivities
 - Link to cloud models
 - Aerosol interactions (e.g., BC+sulfate)
 - Fate of anthropogenic sulphur
- 2. Baseline model for development of GCM aerosol schemes process reduction

- NCAS Collaboration

3. Support of field campaigns (e.g. ITOP July 2004)

- GLOMAP: A 3D sectional aerosol model currently carrying sulfate and sea salt
- Preliminary comparisons with observations are encouraging but more work is needed
- GLOMAP will be used to examine the fate of anthropogenic sulfur
- Work on the development of a GCM aerosol scheme, using GLOMAP is just starting

- 1. Incorporate existing UM sulfate/sea salt scheme in GLOMAP and test
- 2. Incorporate modal microphysical scheme in GLOMAP
 - 1. Start with sulfate/sea salt and progressively add more components
 - 2. Evaluate against GLOMAP and observations
- 3. SOA scheme (ACMSU/UMIST)
- 4. CCN scheme (M. Smith)
- 5. Port to UM

A Brief History of Aerosol Modeling..

- Mechanistic Aerosol Models
 - "Mechanistic Approach"
 - Explicit simulation of the processes that control the aerosol distribution
- Mass Only Aerosol Models
 - Predict aerosol mass
 - Empirical parameterisation of cloud droplet number
- Modal Aerosol Models
 - Size distribution approximated by one (or a number of) statistical functions
 - Aerosol processing treated

CLAW Hypothesis

Comparison With Observations

- Minimises numerical diffusion.
- Maintains a fixed grid

 $\overline{\mathbf{C}}$

С П

O

- Understanding of natural and perturbed size and composition resolved global aerosol lifecycle
 - Routes to CCN formation + sensitivities
 - Link to cloud models
 - Fate of anthropogenic sulphur
 - Aerosol interactions (e.g., BC+sulfate)
- Support of field campaigns
- Baseline model for development of GCM aerosol schemes – process reduction
- Biogeochemical cycling and atmospheric chemistry