

Modeling Emissions of Carbonaceous Particles

Zbigniew Klimont¹⁾, Kaarle Kupiainen²⁾, Tami Bond³⁾

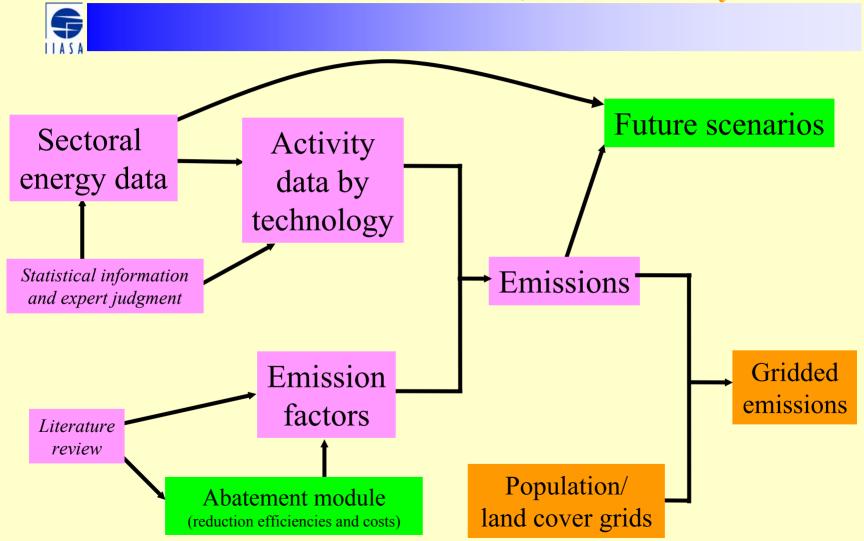
¹⁾ International Institute for Applied Systems Analysis, Laxenburg, Austria (*klimont@iiasa.ac.at*)
 ²⁾ Nordic Envicon Oy, Helsinki, Finland (*kaarle.kupiainen@helsinki.fi*)
 ³⁾ University of Illinois, Urbana, IL, USA (*yark@staff.uiuc.edu*)

AEROCOM Workshop Ispra, Italy, 10th – 12th, March 2004

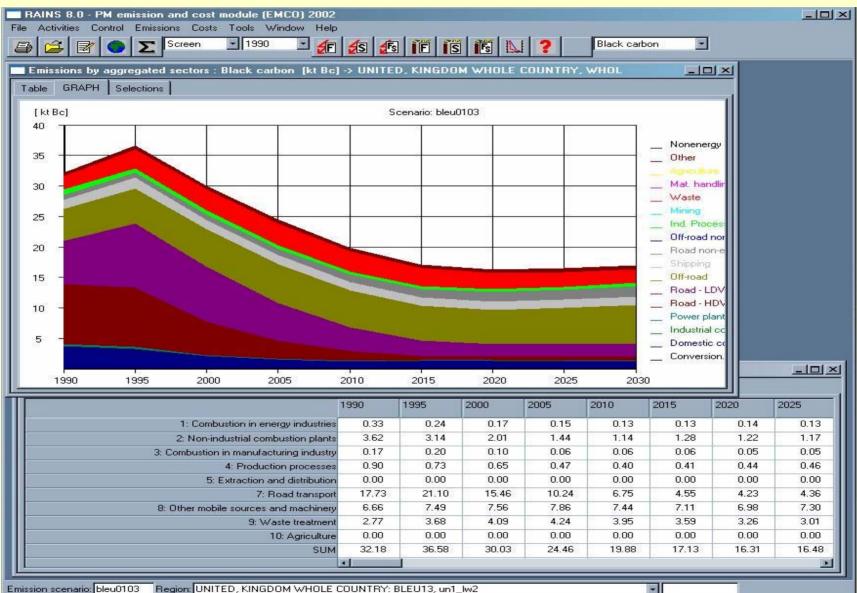
Outline

- Two independent estimation efforts;
 - Global [SPEW], Bond et al., submitted to JGR
 - Regional (Europe) [RAINS], Kupiainen and Klimont, in preparation
- Method
- Snapshots
- Results and discussion
- Reflection on uncertainties
- Further work and conclusions

Method (1)

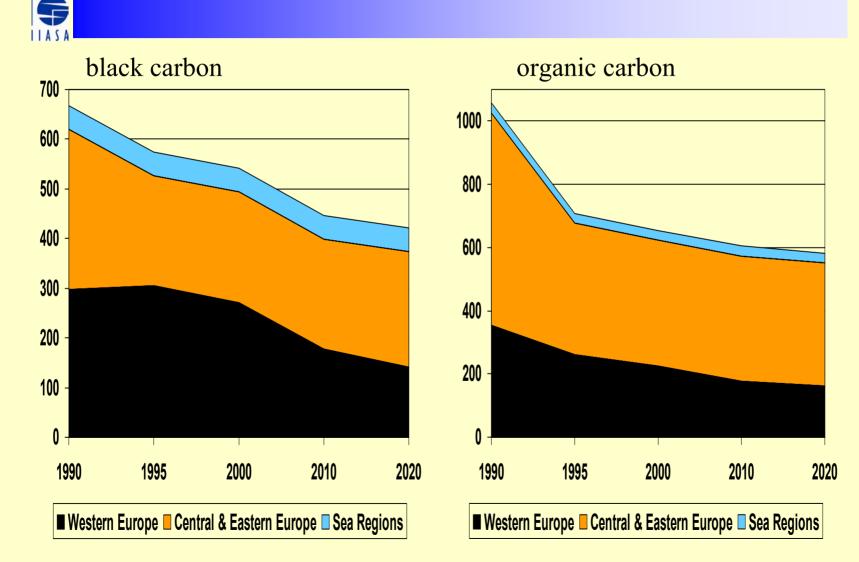

RAINS

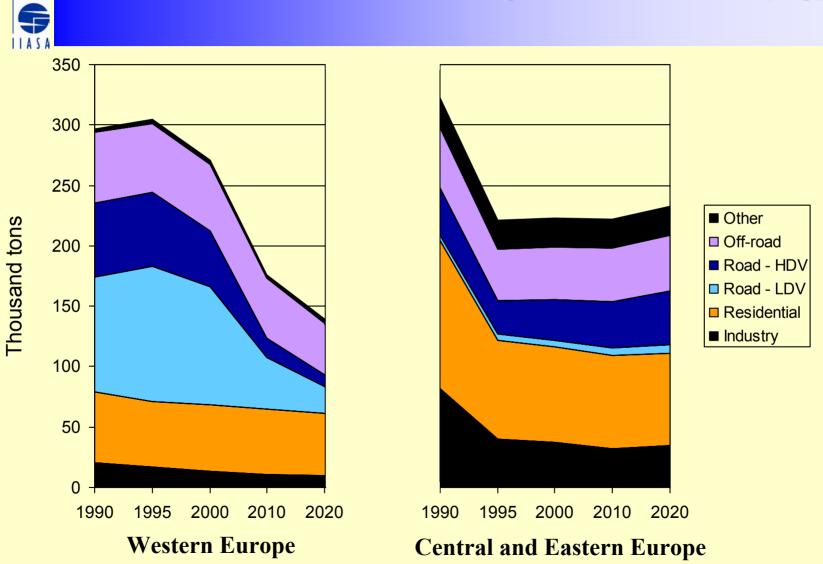
- Current RAINS-PM module developed further to include BC and OC,
- Emissions are calculated for anthropogenic sources from 1990 to 2030,
- Activity data (intl. [IEA, OECD] and national stats and energy models),
- Literature review of emission factors; Efs tied to regionally-specific technology and checked for consistency with the RAINS-PM database.


SPEW

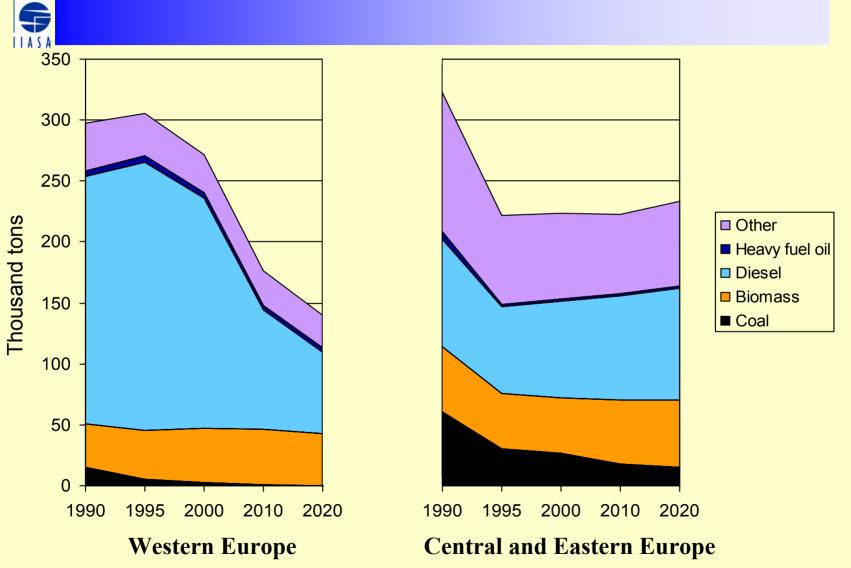
- Emissions are calculated and spatially distributed (current database for years 1980 to 1996, results published for 1996),
- Activity data (modified IEA),
- Literature review of emission factors; Efs tied to regionally-specific technology,
- Explicit uncertainty calculation.

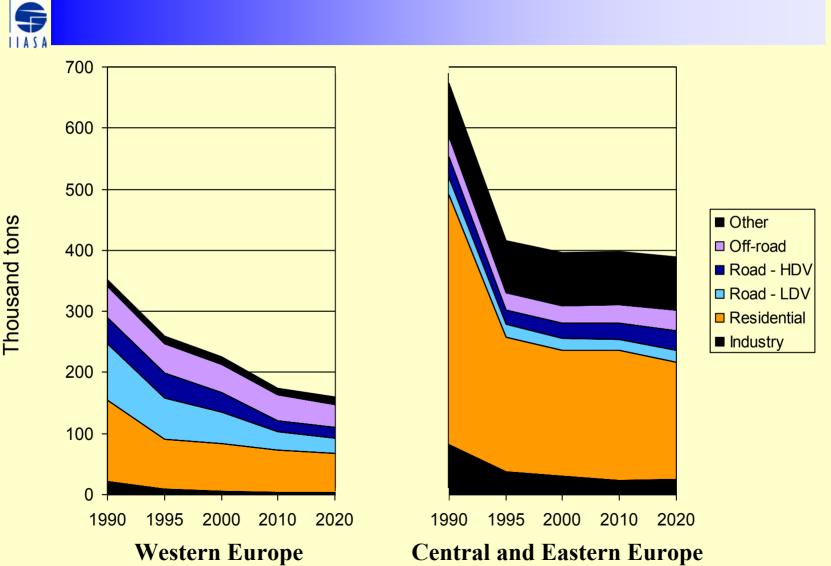
Method (2), Lots of similarities in approach only RAINS only SPEW

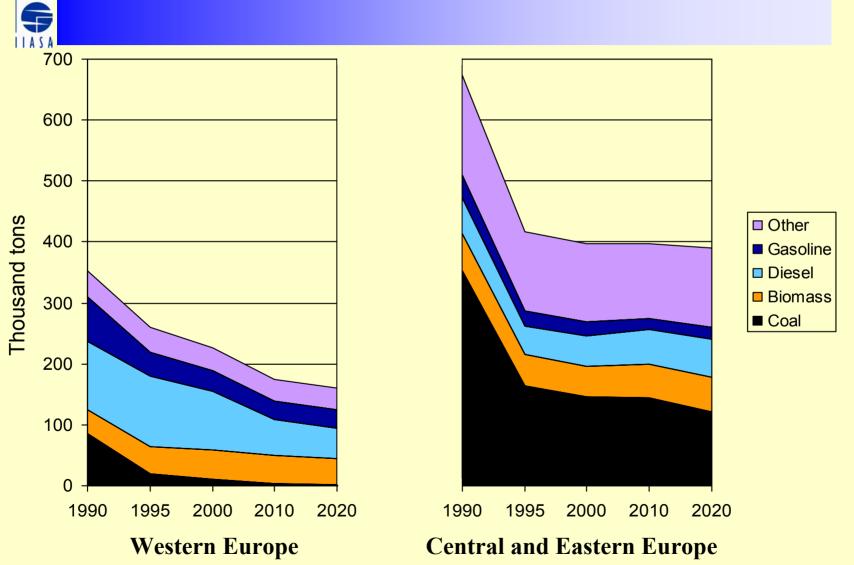

Snapshot - RAINS


Snapshot - SPEW

SPEW 1.1 Disaggregation Country Cou Region C Reg Fuel C Fue Fuel+Tech C Fue C FuelCat C Fue C Sector C Sec C Year C Yea C None C Non	ion C Real I C Fuel I+Tech C Fuel ICat C Fuel tor C Sect ar C Yeal	on C Rection C Fuel +Tech C Fuel+Tec Cat C FuelCat or C Sector r C Year	ch Display: ☐ Fuel Use ☑ BC-Low ☑ BC-Cent ☑ BC-High ☐ OC-Low ☐ OC-Cent ☐ OC-High	(Gg) 2097.4' (Gq) 8057.4' (Gg) 30447.0' (Gq) 10664.7' (Gg) 33875.3'	Ash-Cent (Ash-Hiqh (B P BC-Pub(Gg C-Pub(Gg	(Gg . (Gq . 3) 9834.95	Year: ALL ▲ 1990 ↓ 1996 ↓ ✓ Include open burning?
Location	SectName	LowBC	CentBC	HighBC	PubBC		<u>-</u>
🕨 China	Industrial	34.96	448.65	2862.62	390.14		
China	Open burning	37.68	112.60	347.86	159.62		
China	Power	0.16	3.18	65.07	196.61		
China	Residential	111.30	825.88	2841.47	270.84		
China	Transport	37.63	95.94	298.55	206.42		
North America	Industrial	27.97	78.32	174.11	13.00		
North America	Open burning	36.89	112.79	515.84	283.05		
North America	Power	0.89	6.12	28.04	64.41		
North America	Residential	21.39	86.72	307.74	22.92		
North America	Transport	108.74	253.64	640.30	98.15		
Latin America	Industrial	11.08	72.07	365.62	24.07		
Latin America	Open burning	241.32	871.28	3292.46	1733.65		
Latin America	Power	0.14	0.86	4.62	4.66		
Latin America	Residential	10.38	68.13	220.11	65.96		
Latin America	Transport	73.91	220.62	752.70	152.97		
Western Europe	Industrial	21.86	67.49	159.29	17.02		
Western Europa	Opon huming	16 33	10 OF	226.75	10/ 10		× •


BC, OC emissions in Europe (by region) RAINS Current Legislation Scenario [Gg]


Black carbon emissions in Europe (by sector) RAINS Current Legislation Scenario [Gg]


Black carbon emissions in Europe (by fuel) RAINS Current Legislation Scenario [Gg]

Organic carbon emissions in Europe (by sector) RAINS Current Legislation Scenario [Gg]

Organic carbon emissions in Europe (by fuel) RAINS Current Legislation Scenario [Gg]

Global emissions of black carbon in 1996 SPEW Central scenario

North America		Die els eersteen	Region	[Gg]
Central/S Amer		Black carbon	North America	538
Europe		Power Industry	Latin America	1192
Former USSR		Transport: Road	Europe	553
Middle East		Transport: Non-road	Former USSR	291
Pacific		Residential: Other Residential: Coal	Middle East	108
Africa		Residential: Biofuel	Pacific	199
China			Africa	1966
India		Fraction "contained"	China	1487
Other Asia		% of global	India	577
Total		"contained"	Other Asia	1029
	0% 25% 50% 75% 100%		Total	7937

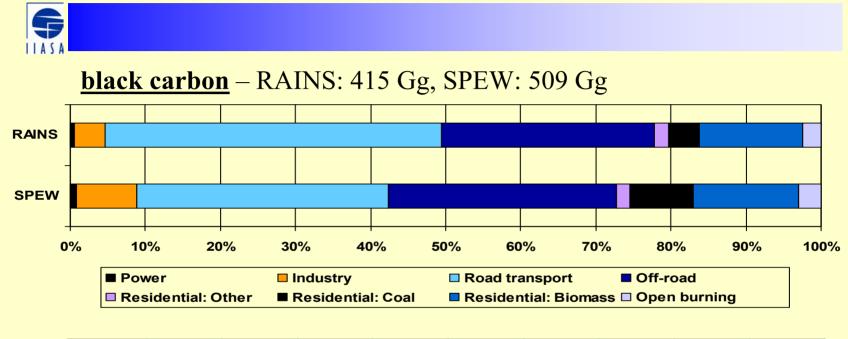
Global emissions of organic carbon in 1996 SPEW Central scenario

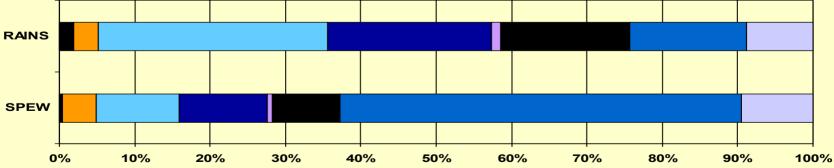


North America		O	Region	[Gg]
Latin America		Organic carbon	North America	2055
		Power	Latin America	6896
Europe		Industry		0890
Former USSR		Transport: Road	Europe	1386
Middle East		Transport: Non-road	Former USSR	1458
Pacific		Residential: Other		
		Residential: Coal	Middle East	204
Africa		Residential: Biofuel	Pacific	1154
China			Africa	12022
India		Fraction	China	2817
Other Asia		"contained"		
		% of global	India	1866
Total		"contained"	Other Asia	3462
(0% 25% 50% 75% 100 [°]	%	Total	33321

Global distribution of BC and OC emissions in 1996 SPEW (Bond et al., submitted to JGR)

black carbon




Comparison of BC and OC estimates for Europe [Gg/year]

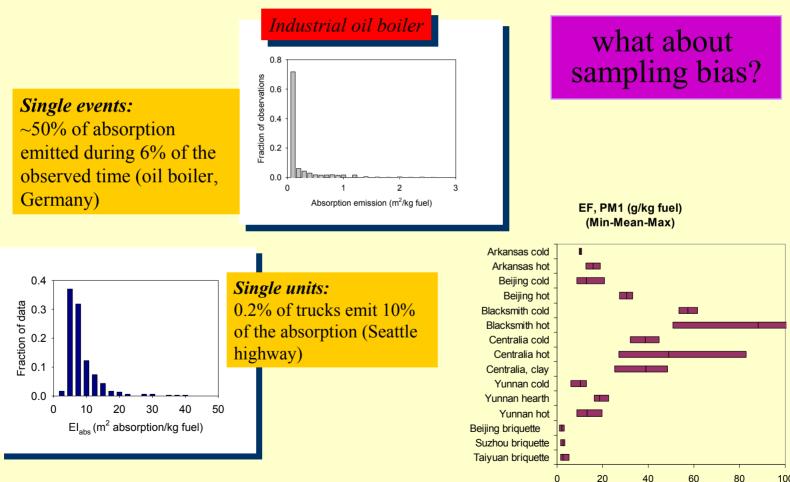
Source	Year	Black carbon	Organic carbon
Cooke <i>et al</i> ., 1999	1996	1355	3246
SPEW (Bond et al., submitted)	1996	553 (395-1117)	1386 (707-3039)
RAINS (Kupiainen and Klimont, in preparation)	1995	427	433
Derwent <i>et al.,</i> 2001	1995-98	482-511±140	n.a.

- Recent work indicates that BC/OC emissions might be significantly smaller than previously believed,
- Large differences, but... not always the same sources are included and geographic coverage of "Europe" varies.

Adjusted RAINS and SPEW estimates for Europe

organic carbon – RAINS: 409 Gg, SPEW: 758 Gg

Uncertainty - Outline

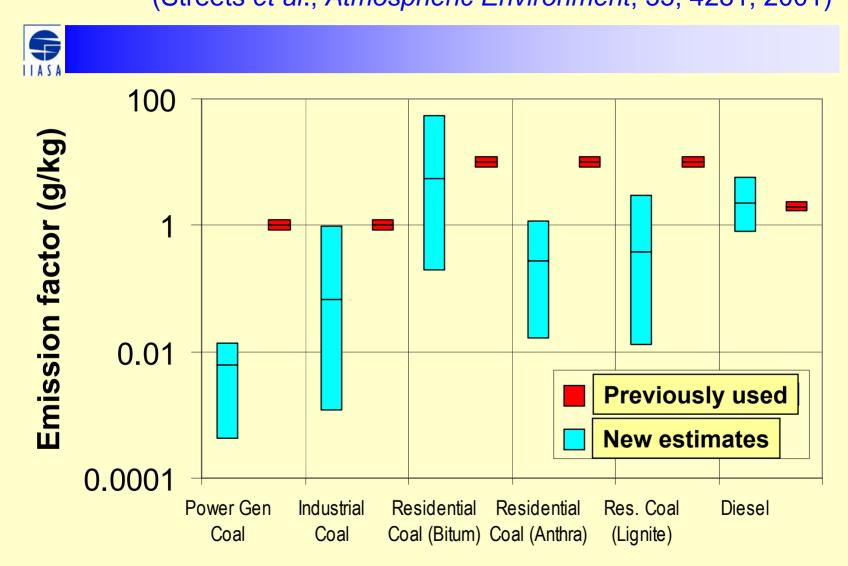


- Emission factors Carbonaceous aerosol emission profile depend on combustion conditions,
 - governed by time-temperature history of the fuel
 - what factors have an effect and how significant is the effect (fuel, operation, stove design, engine technology, etc.)?
 - measurement method are the methods comparable?
- Large sets of measurements needed to get a coherent picture
- Also other sources of uncertainties than emission factors

Uncertainty (1)

How do we know that emission factors are representative?

Uncertainty (2) Are the measurements comparable?



- The measurement methods vary, do they measure the same thing?
 - optical (BC or LAC) \rightarrow absorption
 - thermal (EC/OC) \rightarrow thermal evolution of carbonaceous species
 - thermal with an optical correction (EC/OC) \rightarrow thermal evolution of carbonaceous species
 - solvent extraction (OC) \rightarrow soluble organic species

• Examples:

- carbon black: integrating sphere (optical) overestimated by 21% vs. a thermal method (Hitzenberg et al., 1999. Atm.Env. 33, 2823-)
- ambient samples: integrating sphere (optical) agreed within 5% vs. a thermal optical method (Hitzenberg et al., 1999)
- diesel exhaust: different thermal evolution protocols of the thermal optical method agree within TC ±5% and EC ±20% (Chow et al., 2001. Aerosol Sci. Tech. 34, 23-)

Uncertainty (3) Re-assessment of BC emission factors (Streets *et al.*, *Atmospheric Environment*, 35, 4281, 2001)

There is a need for emission measurements!

BC/OC source	Remarks
Road traffic, exhaust	Several studies, mainly US
Off road and machinery, exhaust	Few studies or no data at all
Domestic combustion, wood	Few studies, mainly US
Domestic combustion, coal	Few studies, some very old
Domestic combustion, oil	Few old studies
Power plants & industry, solid fuels	Several studies, however, of abated emissions
Power plants & industry, oil & gas	Few old studies
Industrial processes	Few studies
Dust (traffic, agriculture, etc.)	Few studies

Uncertainty (4) Important contributors

Apart from emission factors...

- Activity data, e.g., biomass in residential sector, offroad transport, open burning;
- Detailed split of coal and biomass consumption in residential sector, i.e., fireplaces, stoves, boilers, etc.;
- Poor information (read NO information) on how efficient are currently applied 'PM' control technologies in removing carbonaceous particles,
- Interpretation and use of reported measurement data.

TOP4 contributors to variance (SPEW)

- Global BC emissions ("contained" sources)
 - cokemaking (China)
 - wood/residential (activity, emission factors)
 - coal/industrial (emission factors, high emitters)
 - diesel/on-road (emission factors, high emitters)
- Global OC emissions ("contained" sources)
 - wood/residential (activity, emission factors)
 - gasoline/transport (two-stroke engines)
 - agr.waste/residential
 - wood/industrial

Summary of results for black carbon

- Recent estimates agree reasonably well and suggest that emissions are significantly lower (about 60%) than previous work,
- For most regions more than 70% of emissions from "contained" sources,
- Combustion of diesel fuel (transport) dominates (about 50-80 %) emissions in the industrialized regions,
- More than 50 % of emissions in developing world originate from combustion of coal and biomass in residential sector,
- In 1990 and 2000, Western Europe contributed more than 50 % of BC in Europe, (excluding shipping).
- European emissions are calculated to decline in the future primarily due to measures in Western Europe,
- Additional climate "measures" (more diesel and biofuels) could lead to higher BC emissions.

Summary of results for organic carbon

- Recent estimates significantly lower (about 60%) than previous work,
- Large discrepancies between studies, especially for residential combustion,
- In most regions, majority of emissions originate from open burning,
- Combustion of fuel in residential sector responsible typically for more than 50 % of emissions (primarily biomass),
- Emissions from transport are typically the second most important source,
- In Europe, majority of emissions originates from Central and Eastern European countries (solid fossil fuels in residential sector),
- European emissions are calculated to decline only slightly in the future.

Conclusions

- Methodology for assessment of regional and global BC/OC emissions developed, but a thorough verification (and comparison between the models) of assumptions used in calculations needed.
- Emissions from transport and residential combustion dominate "contained" emissions.
- Emissions from open burning are typically more important for OC than BC.
- Large uncertainties of estimates.
- More work needed in order to reduce uncertainties and fill in the gaps.
- Awaiting feedback from atmospheric modelers...

Primary references

- Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J-H., Klimont, Z., A Technology-Based Global Inventory of Black Carbon and Organic Carbon Emissions from Combustion. Submitted to Journal of Geophysical Research.
- Kupiainen, K. and Klimont, Z., The Primary Emissions of Submicron and Carbonaceous Particles in Europe and Potential for their Control. IIASA interim report, in preparation.