MISR Aerosol Retrieval Update

Ralph Kahn David Diner John Martonchik Wedad Abdou Kathleen Crean Barbara Gaitley Olga Kalashnikova Wen-Hao Li

Nine view angles at Earth surface: 70.5° forward to 70.5° aft

Four spectral bands at each angle: 446, 558, 672, 866 nm

Seven minutes to observe each scene at all 9 angles

400-km swath

Global coverage about once per week

275 m - 1.1 km spatial sampling

Air mass factors from 1 (nadir) to 3

Scattering angles from ~60° to ~160° in mid-latitudes

MISR MULTI-ANGLE CAPABILITY – More Information about aerosols

EXPECATIONS based on simulations over cloud-free, calm ocean:

• Aerosol Extinction Optical Depth (τ_a)

-- to better than 0.05 or 20%, whichever is larger, under typical conditions, for common aerosol types except soot, even if the particle microphysical properties are poorly know

• Particle Size (r_a)

- -- "Small," "Medium," and "Large" size discrimination over Accumulation Mode -these are the key distinctions needed to assess aerosol impact on vis spectrum
- Indices of Refraction (nr, ni)

-- Two to four compositional groups (absorbing & non-absorbing, or "dark" and "light")

- Spherical vs. Nonspherical for Sahara dust, Asian dust, and possibly thin cirrus
- Poorer Sensitivity for ni >~ 0.008 (Black Carbon)

→ Under good conditions, we expect MISR to distinguish about 12 aerosol types based on size, shape, and composition

MISR MULTI-ANGLE AEROSOL RETRIEVAL STRENGTHS -

- Sensitivity to Aerosols over Land
- Sensitivity to Aerosol over Very Bright Surfaces (e.g., Desert)
- Sensitivity to Particle Sphericity at least over dark water
- Sensitivity to **Bi-** and even **Tri-modal Distributions** in some cases
- Crude Sensitivity to Single-Scattering Albedo [~ 1.0 vs. 0.88 vs. 0.80 over dark water]
- Sensitivity to **Optically Thin** hazes over land and water
- Sensitivity to Plume Height

Simulated Global, Monthly Aerosol Maps Based on Expected MISR Sensitivity

From: Kahn et al., 2001

Global Aerosol Optical Depth Products

MISR optical depths (558 nm)

March 2002

September 2002

Scatter Plots Showing 579 MISR-AERONET Coincident AOT Events 32 sites, during 2001-2002; Stratified by Expected Aerosol Type

Sensitivity to aerosols over bright surfaces

Over Bright Desert Sites, mid-vis. AOT to ±0.07 [Martonchik et al., GRL 2004, submitted]

Particle Sphericity -- Optically Thick Saharan Dust Plume over Dark Water Near Cape Verde, March 02, 2003

MISR 70°-forward view

Station

Primary Research Retrieval Patch

MISR DF 70° Forward View July 09, 2002

(17.72N, 87.50W

MAS: MODIS Airborne Simulator - ER-2, July 09, 2002

ER-2: 16:29 to 16:31 UTD; 20.70 to 20.48 N lat.; 86.45 to 86.51 W lon.; 20.39 to 24.45 km elev. **WB-57:** 16:33:52 to 16:36:00 UTC [59632 to 59760]; 20.71to 20.48 N lat.; 86.45 to 86.51 W lon; 15.47 to 15.45 km elev.

CPL: Cloud Physics LIDAR - ER-2

Multi-Modal Distributions and Particle Sphericity

MISR Research retrieval Identified Three aerosol components:

- Thin Cirrus
 - confirmed by MAS instrument
- Background Maritime

 medium, spherical, non-absorbing
- Sahara Dust
 - predicted by NAPS model
 - measured by PALMS

Optical depth (558 nm) = 0.20 35% cirrus 50% small spherical non-absorbing 15% dust

Pollution Particle Amount, Size, and Single Scattering Properties Galveston Bay near Houston, TX, September 12, 2002

MISR Research retrieval: mixtures of small & medium, spherical, low-absorbing particles

558 nm AOT	Component 1	Component 2	Component 3
0.60	60% spherical r_{eff} = 0.12 μ m	35% spherical r_{eff} = 0.26 μ m	5% cirrus
	85% spherical r_{eff} = 0.12 μ m	15% spherical r_{eff} = 0.57 μ m	
0.25	85% spherical r_{eff} = 0.12 μ m	15% spherical r_{eff} = 0.57 μ m	
-			

Perspective views from 5 angles

B&B Complex Fire, Oregon 4 September 2003

Aerosol Plume Observations

3000

6000

9000 12000 15000 _{0.0}

0.4

1.2

1.6

B&B Complex Fire, Oregon 4 September 2003

Plume-height mapping using stereo (detail)

Nadir image

B&B Complex Fire, Oregon 4 September 2003

135 MISR-AERONET Coincident AOT Difference Plots Biomass Burning Sites; 2001-2002; Stratified by Season

247 MISR-AERONET Coincident AOT Difference Plots Continental Sites; 2001-2002; Stratified by Season

132 MISR-AERONET Coincident AOT Difference Plots Dusty Sites; 2001-2002; Stratified by Season

65 MISR-AERONET Coincident AOT Difference Plots Maritime Sites; 2001-2002; Stratified by Season

Island events

Selection criteria:

- Isolated from major land (Case 1 waters)
- Mostly cloud-free
- High-quality AERONET retrieval
- AOT < 0.3
- AOT variability low
- Near-surface wind-speed low
- Aerosol air mass likely to be Clean Maritime

Data collected for each event:

- Wind speed (local Met. Station, scatterometer)
- Wind speed variability (local Met. Station, scatterometer)
- Surface pressure (local Met. Station)
- Column ozone amount (TOMS)
- Airmass history (NOAA HYSPLIT)
- AOT (AERONET)
- AOT variation (AERONET time series)
- Aerosol refractive indices (AERONET)
- Aerosol size distribution (AERONET)

Use Mie code to calculate SSA, Q_{ext} , $P(\theta)$

MISR Low-Light-Level Nadir Reflectance Inter-Comparison Clean Island Sites; MODIS-Land, MODIS-Ocean, AERONET+Model

From: Kahn, et al., 2004 (in preparation)

Impact of Band-to-Band Calibration on MISR AOT Retrieval

This change alone amounts to $\Delta \tau_a$ of ~ -0.025 in the Green, about half the original discrepancy

MISR & AERONET AOT Time Series at Four Sites

127 MISR- AERONET & 113 MODIS-AERONET Coincident AOT Comparisons Over Land; March, June, and September 2002

MISR-AERONET & MODIS-AERONET Coincident AOT Comparisons Over Dark Water; March, June, and September 2002

EXPECTED NEAR-TERM UPGRADES TO THE MISR AEROSOL RETRIEVAL STANDARD ALGORITHM –

- Improved Low-light-level Calibration
- More realistic Mineral Dust optical models
- Additional, Darker Spherical Pollution and Biomass Burning analogs
- A Richer Selection of **Bi-modal Mixtures**

Should reduce remaining MISR-AERONET discrepancies by about half.

MISR data available from the NASA Langley Atmospheric Sciences Data Center http://eosweb.larc.nasa.gov/

32 AERONET Site Locations Colored According to Expected Aerosol Type

MISR-MODIS Coincident AOT Comparisons over 62 AERONET sties, June 2002

MISR-MODIS Coincident AOT Comparisons over 62 AERONET sties, September 2002

MISR- AERONET Coincident AOT Comparisons Over Land; March, June, and September 2002

MODIS-AERONET Coincident AOT Comparisons Over Land; March, June, and September 2002

