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Precipitation Liquid-topped clouds Ice clouds

High radar reflectivity of rain High lidar backscatter at cloud High radar reflectivity of ice
drops top from liquid droplets particles
— CloudSat CPR via — CALIOP via — CPR via DARDAR_MASK
2C-PRECIP-COLUMN or DARDAR_MASK

DARDAR_MASK

affer Rosenfeld et al. (2008), Science



Rain from pure liquid clouds (“warm rain”) is very rare over the
extratropical continents
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Warm rain fraction can serve as a process-based observational constraint
on parameterized precipitation

v

Warm rain fraction can be diagnosed in models

v

Warm rain fraction means the same thing in models and satellite

v

Warm rain fraction allows us to draw conclusions on precipitation processes active in the
model and in reality

Warm rain fraction has not been tuned to death

v



Outline

Warm rain fraction in observations and GCMs



Compare satellite climatology to CMIPS cfSites




Compare satellite climatology to CMIP5 cfSites
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Compare satellite climatology to CMIP5 cfSites
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Modeled warm rain fraction is diverse
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Outline

Tuning the warm rain fraction in ECHAM-HAM



Scale factor on autoconversion rate: 107 x Qg reproduces observations
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Threshold on autoconversion: r, > 17 um reproduces observations

re>12 um re >15pum
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These modifications are related
Khairoutdinov and Kogan (2000):
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the autoconversion rate can be rewritten as
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Under the simplifying assumption that r is
uncorrelated with either of g, or N, we
expect the autoconversion rate to scale with
r23~7-5 which effectively sets an r,
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Retuning TOA radiative balance — accretion comes to the rescue

TOA balance (W m~2)
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Links to mixed-phase parameterizations

Control
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Effect on precipitation intensity distribution

» Reducing the warm rain 0<|d<30 30<|g/<60 60<|g<90
fraction also increases the 0.8+ . le-07
intensity spectrum 06- . . 1le-06

9

> Shown here are large-scale 0.4- Tz |0 . le-05
precipitation intensity spectra  0.2- 8 le-04
at different latitude bands So0- 0.01

[8)

» Decreasing the warm rain S 0.84 1
fraction increases the 0.61 3 4
probability of intense 0.4+ Elk
large-scale precipitation 0.2+ " mmh?

0-0- T T T T T T T T T [0.01,0-1)
s9, a9, 39 [0.1.1)
g9 %" 49 % 4497
S o S o S o >1
=3 [=3 =3

)

Intensity (mm h™



Effect on precipitation intensity distribution — probably consistent across

CMIP5 models
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Tuning the warm rain fraction in ECHAM-HAM: conclusions

» Warm rain fraction is very low over continents (especially extratropical NH)

» Warm rain fraction can be diagnosed in GCMs and may serve as a process-based
observational constraint on parameterized precipitation

» Satellite warm rain fraction can be reproduced in ECHAM-HAM by multiplying the
Khairoutdinov and Kogan (2000) autoconversion rate by 104
(default ECHAM-HAM tuning factor: 4) or imposing an re > 17 um threshold on
autoconversion

» TOA radiative budget is strongly affected (large increase in low cloud), but balance can be
restored by tuning up accretion

» Reducing the warm rain fraction to match the satellite climatology also increases the intensity
spectrum; most other CMIP5 models would likely respond similarly



Hypothesis: warm-rain fraction can serve as an observational constraint
on the cloud lifetime effect

» Aerosol influence mainly acts on autoconversion in liquid-water clouds in current models

» The more precipitating warm clouds are simulated in a model, the more opportunity aerosols
have to influence the precipitation microphysics

» We hypothesize that the strength of the cloud lifetime effect in models is therefore related to
the warm-rain fraction

» This hypothesis can be tested in GCMs with parameterized cloud lifetime effect

» Comparing warm-rain fraction in models against satellites may provide an observational
constraint on the cloud lifetime effect



Influence of the warm-rain fraction on ERFge,

Results for ECHAMG.1-HAM2.2, AeroCom Il 1850/2000 emissions
SWPD — Pl (Wm~2) | IWPD — PI (Wm~2) | SW + LW PD — PI (W m~2)
Reference —-2.1 1.0 —-1.1



Influence of the warm-rain fraction on ERFge,
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Influence of the warm-rain fraction on ERFge,

Results for ECHAM6.1-HAM?2.2, AeroCom Il 1850/2000 emissions
SW PD — PI (W m—2) | LW PD — PI (W m~2)
2.1 1.0
—-1.6 0.72

Reference
Reduced warm rain

-1.1
—0.86

» As hypothesized, the configuration with lower warm-rain fraction has a smaller ERF,,

» The change is —0.5 W m~2 SW offset by 0.3 W m~2 LW = plausible that ERF,; change is
a large contribution

> (Low-ccraut configuration has not been retuned and ERF,; has not been diagnosed
separately from ERF, yet)

SW + LW PD — PI (W m~2)



Comparison to Golaz et al. (2011)

» In GFDL AM3, higher critical r, leads to stronger ERF, in contrast to our results

v

In AM3, the decrease in g; due to autoconversion during a time step is limited to

4
crit = & 4
C]/ Qerit = 3 D crltNd ( )

v

In practice, this limit almost always applies, so that g; &~ gerit

v

The anthropogenic perturbation to Ny therefore results in a change in g; is therefore

4
Ag ~ ANy, ()

3 p crlf

i.e., the perturbation grows with the threshold r,

v

In ECHAM-HAM, the combined autoconversion and accretion can deplete g; beyond
threshold re, so that (5) does not apply

Golaz et al. (2011), J. Climate



Preliminary conclusions on the relationship between warm-rain fraction
and aerosol effects

» Changing the warm-rain fraction (in ECHAM-HAM) changes the ERF
= As anficipated, aerosol effects are sensitive to the warm-rain fraction

» Plenty of model diversity
= Useful as an observational constraint

» Next step: investigate relationship between warm-rain fraction and ERF,; across models

= Multiple CAM flavors, SPRINTARS, IFS, ECHAM-HAM, HadGEM(2) are on board as
part of an AeroCom experiment

» Participation by other models welcome!

= Required output: snow and rain mixing ratio/flux/path, non-accumulated field,
ideally 3h; preferably for a model configuration with known ERF;



	Motivation
	Warm rain fraction in observations and GCMs
	Tuning the warm rain fraction in ECHAM–HAM

