Can AEROCOM help reduce uncertainties in direct radiative forcing of aerosols

Michael Schulz, Christiane Textor, Sarah Guibert (LSCE/CEA/Saclay/F) Stefan Kinne (MPI-M, Hamburg)

and AEROCOM aerosol modeling community

Special thanks to AERONET / MODIS / MISR / TOMS / AVHRR / EARLINET / IMPROVE / EMEP / GAW operators

ACKNOWLEDGMENTS for funding to EU projects PHOENICS and CREATE

Laboratoire des Sciences du Climat et de l'environnement

AEROCOM

16 Contributing Global Aerosol Models:

Sprintars, Kyushu University, Kyushu (KYU) Toshihiko Takemura et al. // LMDzT-INCA, Lab Science Climat et de l'Enivonnement, Paris (LSCE) Michael Schulz, Yves Balkanski, Christiane Textor, Sylvia Generoso, Sarah Guibert, Didier Hauglustaine // ECHAM5, MPI-Meterology, Hamburg (MPI) Philip Stier, Hans Feichter, Elisabeth Vignati, Julian Wilson, Michael Schulz // **GCM/CAM**, AROM Met Service Canda, Toronto (AROM) Sunling Gong et al. // **MIRAGE**, Battelle, Pacific Northwest National Laboratory, Richland (PNNL) Steve Ghan and Richard Easter // CTM2, Univ. of Oslo, Oslo (UIO-CTM) Gunnar Myhre et al. // ULAQ-CCM, Universita degli Studi L'Aquila (ULAQ) Giovanni Pitari, Eva Mancini and Veronica Montanaro // CCM-Oslo, Univ.of Oslo, Oslo (UIO-GCM) Trond Yversen, Oyvind Seland, J.E.Kristjansson // LMDzT, Lab Opt Atmos, Lille (LOA) LMDZ-GCM / Shekar Reddy and Olivier Boucher (LOA, Lille) // MATCH, NCAR, Boulder (MATCH) David Fillmore, Phil Rasch, Bill Collins // IMPACT/DAO, Univ Michigan, Ann Arbor (UMI) Joyce Penner et al. // ECHAM-MADE, (DLR) Johannes Hendricks et al. // GISS, Dorothy Koch und Susanne Bauer // TM5 (IMAU) Maarten Krol, Frank Dentener // GOCART, Mian Chin, Paul Ginoux **MOZART-GFDL-NCAR (MOZGN)** (NOAA-GFDL&NCAR) Larry Horowitz, Xuexi Tie, Jean-Francois Lamarque, Paul Ginoux

- Compare an ensemble of global aerosol models
- Eliminate weak components
- Reduce uncertainty in simulated radiative forcing
- Multi-model evaluation with observations
 - From the surface (e.g., AERONET, IMPROVE, EMEP, GAW)
 - Vertical profiles (EARLINET)
 - From satellites (MODIS, AVHHR, TOMS, POLDER, MISR,...)
- Analyze and improve critical parameters and processes
- Experiment A models as they are
- Experiment B with AEROCOM source y 2000
- Experiment PRE with AEROCOM source 1750
- Experiments INDIRECT coordination J. Penner

http://nansen.ipsl.jussieu.fr/AEROCOM

BASIS

SOALS

Which strategy to reduce uncertainty in aerosol radiative forcing? Can an intercomparison help?

- Models are complex expert choices with history
- Model parts are (unfortunately) not as modular as promised
- Too many sensitivity studies to be done
- Documentation of differences may lead to
 - Removal of errors in individual models
 - Understanding of differences
 - Specific sensitivity studies
 - Uncertainty range if models behave reasonably well

Documentation What you may (*or may not*) find on the AEROCOM web interfaces

Model	Type of model Name, Version	Horizont. Resolution (x y) (lon lat)	Vertical Resolution (# of levels) (type)	Туре	number of bins or modes	aerosol mixing	Aerosol dynamics
ARQM	CTM Canadian GCMIII	128x64 2.81°x2.81°	32 hybrid sigma-p	bin	17 (12 DU + 5 mixed)	DU + internal	none
DLR	GCM ECHAM4	96x48 3.75°x3.75°	19 sigma	modal, sigma fix	2 nucl+acc	internal	aging of BC and POM SO4 microphysics
GISS	GCM modelE	46x72 5°x4°	20 sigma	bin	10 2 SS, 4 DU, 1BC, 1 POM,	external	aging of BC and POM
GOCART	CTM GOCART 3.15b	144x91 2.5°x2.0°	30 sigma	modal, sigma fix	17 8 DU, 4 SS, 2 BC, 2POM,	external	aging of BC and POM
KYU	GCM CCSR/NIES/FRSGC GCM / SPRINTARS /	320x160 1.1°x1.1°	20 sigma	modal, sigma fix	17 10 DU, 4 SS, 1 BC, 1 BCPOM, 1 SO4	external partly internal for BC/ POM	none
LSCE	GCM LMDzT 3.3	96x72 3.75°x2.5°	19 sigma	modal, sigma fix	5 accum. sol+insol, coarse sol+insol,	external mixture of internally mixed modes	aging of BC and POM
LOA	GCM LMDzT 3.3	96x72 3.75°x2.5°	19 sigma	bin	17 2 DU, 10 SS, 2 BC, 2POM,	external	aging of BC and POM
МАТСН	CTM MATCH v 4.2	192x94 1.9°x1.9°	28 sigma-p	bin	8 4DU, 1SS,1 BC, 1POM, 1SO4	external	aging of BC and POM
MPI HAM	GCM ECHAM5.2	192x96 1.8°x1.8°	31 hybrid sigma-p	modal, sigma fix	7	external mixture of internally mixed modes	Nucl., Coag., Condensation Thermodynamics
MOZGN	CTM MOZART v2.5	192x96 1.9°x1.9°	28 sigma	bin	12 1SU, 1OC, 1BC,5 DU, 4 SS	external	aging of BC and POM
PNNL	GCM MIRAGE 2 / derived from NCAR CAM2.0	144x91 2.5°x2.0°	24 hybrid sigma-p	modal, sigma fix	8 aitken, accum., coarse DU, coarse SS,	external mixture of internally mixed modes	SO4 microphysics
TM5	CTM TM5	60x45 6°x4°	25 hybrid sigma-p	modal, sigma fix	9 3 SS, 2 DU, SOA, POM, BC, SO4	external	none
UIO_CTM	CTM OsloCTM2	128x64 2.81°x2.81°	40 sigma	bin	20 8 DU, 8 SS, BC, POM, biomass burn BCPOM,	external except biomass burning	aging of BC and POM
UIO_GCM	GCM CCM3.2	128x64 2.81°x2.81°	18 hybrid sigma-p	external: modal fix internal: bin	55 12 modes 43 bins	8 prescribed external 4 transported external 4 transported internal	aging of BC and POM
ULAQ	CTM ULAQ	16x19 22.5°x10°	26 log-p	bin	41	external	aging of BC and POM SO4 microphysics
UMI	GCM IMPACT	144x91 2.5°x2°	30 sigma	bin	13	external	none

The simple equation at the base of aerosol radiative forcing

Range of burdens from 16 AEROCOM-A models_____

M

M

Value from individual model

2/3 uncertainty in last IPCC report 2001, chapter 5, Penner et al.

Burden = *Emission x Lifetime*

f(chemical reactions, removal, size, vertical mixing, regional distribution)

M

М

Sulphate

Particulate Organic Matter

Sulfur sources/Uncertainty

The uncertainty of the sulfur sources is caused by chemistry, not by emissions.

Sink processes: Wet dep

Lifetime differences are due to

- -- removal velocity parameterisation
- -- covariation of removal & transport & emission
- wet removal is height dependent
- emission in dry areas&seasons
- transport efficiency to upper troposphere
- mixing in the boundary layer

Latitude

120

Example: Faction of POM emissions from total BC+POM

Precipitation

 $M\alpha_s f(RH) = M\alpha_s f(RH)$

Load is not more certain than Aerosol optical depth?

Total aerosol optical depth is more certain than components? How uncertain is the conversion of Load to Aerosol Optical Depth

 α

ά

2/3 uncertainty in last IPCC report 2001, chapter 5, Penner et al.

Compensation effects?

Covariations of Humidity and Load ? Load and Size ? Humidity and aerosol profile ?

Annual mean zonal mean vertical aerosol concentration

MPI_HAM 1.1

UIO_CTM 1.9

LSCE 1.7

PNNL 3.0

UIO_GCM 1.6

MATCH 0.6

TM5 5.2

UMI 4.8

μg/m³ 100.00 50.00 25.00 10.00 7.50 5.00

2.50 1.00 0.75 0.50 0.25 0.00

ULAQ 2.7

- Global annual mean aerosol concentration [ug/m³]
 - S latitude N

Black carbon vertical distribution? use observations from Mountains?

M

 $((1-\omega_0)/\omega_0)]$

Black carbon concentration Altitude versus Latitude

 $M\alpha_s f(RH)$

 $M\alpha_s f(RH)$

Year 2000 Mean LIDAR from Hamburg (MPI-M) against 4 AEROCOM models

humidity

load

+

mass extinction

+

• Can we establish an overall error for each model?

CORRELATION AND SLOPE MODELS vs DIFFERENT DATA SETS AOD@550nm Angstroem Comp. Sulphate Conc

Black Carbon Conc.

Organic Carbon Conc. Sea Salt Conc.

HOW TO SYNTHESIZE AEROCOM?? Taylor Diagrammes condense spatio-temporal varying fields

Example: Follow up on changes in LMDzT-INCA model versions

SEA-MISR_9999

SEA-MODIS_9999

Statistics calculated for Taylor plots

- 13 AEROCOM models output
- One year of monthly fields / 1x1 regridded
- Area weighted correlation / StdDev / RMS of spatio-temporal variation
- Reference data sets AERONET 2000 / MODIS 2000 / MODIS 00-03 / MISR 2000 / MISR 00-03 / TOMS 79-01 / AVHRR 83-01
- For satellite comparisons ca 300.000 data points

Green Satellites // Blue high resolution nudged GCMs or CTMs // Red lower resolution nudged GCMs // Black GCMs

FACTOR DEVIATION to MODIS/MISR data

AOT fine fraction (0-1) MODIS 2000

Land vs Sea vs Global

Fine mode from models
= sum(SO4+POM+BC)

AN: ANE1_2000
AR: ARQM_9999
AV: AVHRR_9999
GI: GISS_2000
GO: GOCART_20
KY: KYU_2000
LO: LOA_2000
LS: LSCE_2000
MA: MATCH_2000
MI: MISR_2000
MI9: MISR_9999
M0: MODIS_2000
M09: MODIS_999
MM: MODMIS_20
MP: MPI_HAM_20
PN: PNNL_2000
TO: TOMS_9999
UC: UIO_CTM_20
UG: UIO_GCM_99
UL: ULAQ_9999
UM: UMI_2000

Maximum correlation coefficients

of total spatio-temporal variation (12 monthly fields)

Reference	Sea	Land	World
AERONET	0.88	0.75	0.80
MODIS 2000	0.85	0.70	0.80
MODIS 00-03	0.85	0.75	
MISR 2000	0.80	0.60	
TOMS 79-01		0.60	
AVHRR 83-01	0.78		
MODIS	0.55	0.45	0.65
fine fraction AOD			

Conclusions from spatio-temporal variability analysis

- Satellite/AERONET observations have similar standard deviation.
- Some models and satellites capture similar variablity of reference!
- Correlations are never better then ~ 0.85
- Agreement satellite and some models gives confidence

Significantly smaller correlation and larger RMS over land and for fine aerosol fraction:

Why should a model "perform" better over sea?

- because far away from sources
- but sources need to be right
- but dust and seasalt are more uncertain
- but long range transport is more difficult to simulate

Can we rely on the fine mode satellite products to estimate the anthropogenic component of the aerosol?

Stable and good: the MEDIAN from models

AN: ANET 2000 AR: ARQM 9999 AV: AVHRR 9999 GI: GISS 2000 GO: GOCART 200 KY: KYU 2000 LO: LOA 2000 LS: LSCE 2000 MA: MATCH 2000 MI: MISR 2000 MI9: MISR 9999 M0: MODIS 2000 M09: MODIS 9999 MM: MODMIS 200 MP: MPI HAM 200 PN: PNNL 2000 TO: TOMS 9999 UC: UIO CTM 200 UG: UIO GCM 999 UL: ULAQ_9999 UM: UMI 2000

AEROCOM understanding of major parameters entering in forcing calculations

State of forcing estimate assembling

- forcing
 - clear-sky forcing (ToA comp. to CERES)
 - all-sky forcing
 - anthropogenic forcing and forcing efficiencies
- available data-sets
 - GI GISS, New York
 - OG Oslo-GCM, Oslo
 - LO LOA, Lille
 - SP Kyusho
 - EC MPI, Hamburg
 - Ae AERONET

Koch, Bauer, Miller ... Iversen, Seland Boucher, Reddy Takemura Stier, Feichter Holben, ..., Kinne

yearly averages are shown (yearly averages data required averages from all 12 months)

clear-sky forcing [- W/m2]

ТоА	C,m	C,n	GI	OG	LO	AE	
global	5.7	4.2	2.7	2.2	2.8	6.4*	
NH coast	8.5	6.7	1.5	3.8	5.8	7.5	
EQ coast	6.1	4.9	1.4	3.2	2.9	7.6	
surface			GI	OG	LO	AE	
global			4.0	10.8	5.6	10.7*	
NH coast			3.5	10.2	10.4	10.3	
EQ coast			3.1	8.7	6.7	13.1	

* biased high due to sampling in areas of large aot

- data suggest larger (neg.) ToA forcing than models
- data suggest biomass stronger surf forcing (+ ssa)
- larger ToA model differences on a regional basis

Conclusions

- AEROCOM comparisons obs/model bear still a treasure with respect to understanding model performance
- So far, it seems that the global anthropogenic aerosol forcing can not be established by observations *alone*
- The ranges established for the different parameters can serve as a base for an uncertainty estimate of forcing
 - -Should we weigh model results with 1/RMS?
 - -Should we establish pdf around Median model?
 - -How do we judge performance against different obs?