<u>Motivation</u>:

Better constrain aerosol radiative effects Use an assimilation technique to nudge the fields of optical depth Describe the difference in the TOA forcing between assimilated and not assimilated fields

Developments:

A coupled GCM/chemical module, the chemistry and the aerosols can be treated interactively

Include this chemical module into the IPSL Earth System Model

GCM-Chemistry coupling: LMDz-INCA INCA=INteractions between <u>Chemistry</u> and <u>A</u>erosols

Reference Versions

- ✓ LMDZ.3.3, 96x72x19, Tiedtke's convection
- ✓ Gaseous Chemistry: 90 species, 300 reactions (INCA CH4 et INCA NMHC)
- ✓ Aerosols: 25 species, 15 reactions, spectral scheme (INCA CH4AER)
- ✓ Inverse modelling and assimilation CO_2 , $CH_{4,}$ aerosols
- ✓ Stratospheric version: 96x72x50 (version INCA CH4STRATO)

Emissions

- ✓ Biogenic emissions coupled to the bosphere model ORCHIDEE
- ✓ Biomass burning emissions distributed following ATSR fire counts

Diffusion of INCA

- ✓ Several laboratoires: LSCE, SA, LMDZ, LOA, LGGE
- ✓ Publications <u>INCA</u>: 6 chemistry + 3 aerosols
- ✓ Web site, web interface for results through AEROCOM
- (we also produce maps of all physical variables and tracer dignostics from the simulations)

INCA Aerosol Module

Dust / Sulphate / Black Carbon / Organic Matter / Sea Salt / Nitrate / Ammonium Modal approach: one N(umber) and x M(ass) tracer per aerosol mode

	Insoluble Modes	Soluble Modes
Coarse	N _{CI} M _D M _{NO3}	$\Rightarrow N_{CS} M_{SO4} M_{MSA} M_{SS} M_{NO3} M_{NH4}$
		ſ
Accumulatio	on N _{AI} M _{BC} M _{POM}	$N_{AS}, M_{SO4} M_{MSA} M_{BC}, M_{POM}, M_{SS} M_{NO3} M_{NH4}$
		$\mathbf{\hat{1}}$
Aitken	N _{BC/OC} , M _{BC} , M _{OC}	\Rightarrow N _T , M _{SO4} , M _{BC} , M _{OC}
		ſ
Nucleation		N _{SO4} , M _{SO4}

The Kalman Filter

(1st time step : $x^{b} = x^{model}$ then : $x^{b} = x^{a}$)

$K = BH^{\dagger} (HBH^{\dagger} + O)^{-1}$

After integration of obs $y_0(t)$:

- $B = B_{\dagger} B_{\dagger}H^{\dagger} (HB_{\dagger}H^{\dagger}+O)^{-1}HB_{\dagger}$
- └> propagation of B

B : error covariance matrix of the background

O : error covariance matrix of the observations

B & O error covariance matrix

for the observations :

 $\underline{O} = \sigma_0 \mathbf{I} \quad \text{avec} \quad \sigma_0 = \varepsilon_0 + \mathbf{f}_0 \tau_0$ $\underline{for \ the \ a \ priori :} \quad B = \sigma_R \mathbf{I} \quad avec \quad \sigma_R = \varepsilon_m + \mathbf{f}_m \tau_m$

 ϵ_0 , f_0 , ϵ_m , f_m depend on the region

 Both are determined following exactly the same method, from comparisons to AERONET data

To characterise O & B ...

Within each region, the same error statistics are used

	σ_{g}	mmr	r _m	r _e
CI	2.00	1.170	0.277	0.921
CS	2.00	1.831	0.433	1.439
SS	2.00	5.010	1.185	3.939
AI	1.59	0.113	0.059	0.101
AS	1.59	0.190	0.100	0.171

	$\sigma^*(m^2/g)$	ρ (g/cm3)
Dust	0.78	2.65
BC	4.9 (7.5)	1.55 (1.0)
SS	0.59	2.2
РОМ	1.7	1.5
SO4		1.7

Properties are given for the dry aerosol

 σ_{g} : geometric standard deviation mmr : mass median radius (µm) r_m : modal radius (µm) r_e : effective radius (µm)

The POLDER mission

POLDER-1 : Nov 96 to Jun 97 POLDER-2 : Apr 03 to Oct 03

(On ADEOS)

POLDER AOT

(Aerosol Optical Thickness) Classical method - Over ocean only AOT \propto aerosols load

Pol

POLDER AI (Aerosol Index) Originality : polarization - over ocean and land

AI \propto aerosols load in the fine mode

Validation / Evaluation

Aerosol optical depth at 550nm LMDzT-INCA-AER

LSCE Mean: 3.08506E-02

0.3000

0.1000

0.0750

0.0500

0.0250

0.0100

0.0025

0.0010

0000

0.3000

0.1000

0.0750

0.0250

0.0100

0.0050

0.0025

0.0010

0.0000

0.3000

0.2000

0.1000

0.0750

0.0500

0.0250

0.0050

0.0010

0000

0.3000

0.1000

0.0750

0.0500

0.0250

0.0100

0.0050

0.0025

0.0000.0

Longitude

CORRECTION TO OPTICAL DEPTH DUE TO ASSIMILATION

Direct Radiative Forcing by component

-25 -15 -10 -5 -2 -1 -0.5 0.5 1 2 5 10 15 25

Uncertainties

<u>Model</u>

- ✓ Treating internal mixtures
- Coherence between satellite resolution, model resolution and point measurements from AERONET
- Large range in the water content associated with the aerosol (hygroscopicity of seasalt at high RH is an issue).
- Evaluate model vs measured size distributions (issues of dataset strategies)

Future Developments

- Inclusion of chemistry module in the Coupled Model (atm-oceanseaice)
- ✓ Include the information from the LW radiative forcing
- ✓ Role of aerosol in current climate (GEMS project)