Size distributions from AERONET : Accuracy, Issues, Improvements

<u>O. Dubovik</u>¹, B. N. Holben¹, A. Smirnov^{1,} T. F. Eck¹, T. Lapyonok¹, A. Sinyuk¹, M. Sorokin¹, D. Tanre², P.Goloub², I. Slutsker¹ and D. Giles¹

> 1- Goddard Space Flight Center, NASA (AERONET) 2- Université de Sci. et Tech. de Lille , France (PHOTON)

Forward model:

-Spectral and angular scattering by particles with different sizes, compositions and shapes - Accounting for multiple scattering in atmosphere

(Dubovik and King, JGR, 2000)

aerosol particle sizes, refractive index, single scattering albedo, etc.

INPUT of Forward Model

Single scattering: aerosol particles - homogeneous spheres

Multiple scattering:

scalar radiative transfer with Lambertian ground reflectance solved by DisOrds (Nakajima-Tanaka or Stamnes et al.)

Accuracy ???

CC.

Theoretical limitations

Forward model:

- particle shapes: spheres, spheroids (shape retrieval ?)
- particles are homogeneous (bi-components ?)
- horizontal homogeneous
- vertically homogenous aerosol or assumed profile of extinction (?)
- assumed surface albedo or assumed BRDF
- assumed gaseous absorption

Inversion assumptions:

- smoothness constraints on size distribution
- smoothness constraints of spectral dependence of ref. Index
- log-normal distribution of random errors

Perspectives:

- assuming bi-component aerosols
- retrieval of BRDF from combination of AERONET with satellite and aircraft observations
- retrieval of shape distribution

Measurement limitations

Geometry:

- scattering angle coverage: $\sim 3^{\circ}(1^{\circ} ?) 150^{\circ}$
- spectral coverage: ~ 0.34 1.6 μm

<u>Measurement accuracies:</u>

- optical thickness: ~ 0.01-0.02
- sky-channel calibration: ~ 5 %
- azimuth angle pointing: ~ 0.5°
- degree of linear polarization: ~ 1-2 % (?)
- consistency between polarization and intensity: good (?)

- cloud contamination: almucantar (good), principle plane (???)

Random ERRORS in AERONET retrievals

Sensitivity to instrumental offsets

Offsets were considered in:

- optical thickness:
- sky-channel calibration:
- azimuth angle pointing:
- assumed ground reflectance:

 $\begin{array}{lll} \Delta \tau(\lambda) = \pm 0.01; \ \pm 0.02; \\ \Delta_I(\lambda; \Theta) / I(\lambda; \Theta) \ 100\% &= \ \pm 5\%; \\ \Delta \phi = 0.5^o; \ 1^o; \\ \Delta A(\lambda) / A(\lambda) \ 100\% &= \ \pm 30\%; \ \pm 50\%; \end{array}$

Aerosol models considered (bi - modal log-normal):

- Water-soluble aerosol for $0.05 \le \tau(440) \le 1$;
- Desert dust for $0.5 \le \tau(440) \le 1$;
- Biomass burning for $0.5 \le \tau(440) \le 1$;

Results summary:

- τ(440) ≤ 0.2 dV/dInr (+), $n(\lambda)$ (-), $k(\lambda)$ (-), $ω_0(\lambda)$ (-)
- τ (440) > 0.2 dV/dInr (+), $n(\lambda)$ (+), $k(\lambda)$ (+), $\omega_0(\lambda)$ (+)

- Angular pointing accuracy is critical for *dV/d*Inr of dust

(+) <u>CAN BE</u> retrieved (-) <u>CAN NOT BE</u> retrieved

Sensitivity to forward model limitations

Mixed aerosols (inhomogeneous spherical aerosols):

- Externally mixed (n(I) and k(I) different for fine and coarse modes)
- Internally mixed (n(I) and k(I) different for core and shell) Biomass Burning

Results summary:

- dV/dInr (+), $\omega_0(\lambda)$ (+), $n(\lambda)$ (+, effective), $k(\lambda)$ (+, effective)

Non-spherical aerosols:

- Spheroids (prolate, axis ratio 2) - Desert dust

- dV/dInr coarse mode (+), fine mode (+, zenith angle < 25°)
- $\omega_0(\lambda)$ (+) full solar almucantar (zenith angle \geq 50°)
- **κ(**λ) (+)
- n(440) (-), n(670) (-), n(870) (+/-), n(1020) (+)

(+) <u>CAN BE</u> retrieved (-) <u>CAN NOT BE</u> retrieved

AERONET inversion scenarios

Almucantar: $\tau(\lambda), I(\lambda, \Theta)$ $\lambda = 0.38, 0.44, 0.5, 0.67,$ 0.87, 1.02, 1.64, μm

Principal Plane: $\tau(\lambda), I(\lambda, \Theta)$ $\lambda = 0.38, 0.44, 0.5, 0.67,$ 0.87, 1.02, 1.64, μm

Inversion spheres **Products:** dV/dln(r_i) **n(**λ) **k**(λ) spheroids BRDF errors $\omega_0(\lambda)$ $P_{11}(\lambda), P_{12}(\lambda), ...$ fine & coarse satellite, aircraft, etc. fluxes, ...

Polarized Principal Plane: $\tau(\lambda), I(\lambda,\Theta), P(\lambda,\Theta)$ $\lambda = 0.87 \mu m$

AERONET model of aerosol

spheroid kernels data base for operational modeling !!!

K - pre-computed kernel matrices: Input: n and k

Input: ω_p (*N*_p =11), $V(r_i)$ (N_i=22-26)

Basic Model by Mishchenko et al. 1997: > randomly oriented homogeneous spheroids > $\omega(\varepsilon)$ - size independent shape distribution

 $\tau(\lambda), \mathbf{F}_{11}, \dots, \mathbf{F}_{44} \approx \sum_{(i;p)} \mathbf{K}_{ip}(\dots; n; k) \omega_p V(r_i)$

Time: < <u>one sec.</u> Accuracy: < <u>1-3 %</u> Range of applicability: $0.15 \le 2\pi r/\lambda \le 280$ (26 bins) $0.4 \le \varepsilon \le 2.4$ (11 bins) $1.33 \le n \le 1.6$ $0.0005 \le k \le 0.5$

Output: τ(λ), $ω_0(λ)$, $F_{11}(Θ)$, $F_{12}(Θ)$, $F_{22}(Θ)$, $F_{33}(Θ)$, $F_{34}(Θ)$, $F_{44}(Θ)$

Cape Verde (2001) dust Size distributions

(110 cases; $\tau(1020) \ge 0.3$; $\alpha \le 0.6$)

9 groups: τ = 0.39, 0.44, 0.48, 0.50, 0.52, 0.57, 0.60, 0.62,0.71

Comparison of "laboratory" Phase Function with typical AERONET retrieval

Retrieval using combinations of up-looking Ground-based and down-looking satellite observations

<u>Aerosol Properties:</u>

- size distribution
- real ref. ind.
- imag. ref. ind
- (AERONET sky channels)

Surface Parameters:

-BRDF (MISR channels) -Albedo (MODIS IR channels)

AERONET-MISR

August 9, 2003 τ(0.44) ~ 0.3

Simultaneous fitting

AERONET- POLDER

June 24, 2003 τ(0.44) ~ 0.26

Simultaneous fitting

Comparisons of Surface Retrievals

POLDER: June 24, 2003 τ(0.44) ~ 0.26 , SZA=47⁰ MISR: August 9, 2003 τ(0.44) ~ 0.3, SZA=40⁰

Surface Effect on Retrievals of the Refractive Index (low aerosol loading)

POLDER: June 24, 2003 $\tau(0.44) \sim 0.26$, SZA=47⁰

MISR: August 9, 2003 τ(0.44) ~ 0.3, SZA=40⁰

Surface Effect on the Retrievals of the Size Distribution (low aerosol loading)

POLDER: June 24, 2003 τ(0.44) ~ 0.26, SZA=47⁰ MISR: August 9, 2003 τ(0.44) ~ 0.3, SZA=40⁰

Surface Effect on the Retrievals of Size Distribution

(Principle Plane with corrected surface)

POLDER: June 7, 2003 $\tau(0.44) \sim 0.67$, SZA=70⁰ POLDER: September 27, 2003 $\tau(0.44) \sim 0.24$, SZA=70⁰

Fitting Accuracy of Radiances Spheroids and Spheres (principle plane)

POLDER: September 27, 2003 $\tau(0.44) \sim 0.24$, SZA=34⁰

5.5%

2.8%

Satellite: ~ 1-3%

Scattering Angle (degrees)