

Automated algorithm for remote sensing of aerosols and trace gases using MFRSR measurements

Mikhail Alexandrov^{1,2}, Barbara Carlson², Andrew Lacis², Brian Cairns^{1,2}, and Alexander Marshak³ ¹Columbia University, New York ²NASA Goddard Institute for Space Studies, New York ³NASA Goddard Space Flight Center, Greenbelt, MD

Overview

- MFRSR instrument
- Automated cloud screening
- Retrieval algorithm
- Aerosol mode separation examples

MFRSR instrument

MFRSR networks

Southern Great Plains Network (DOE ARM)

NASA

MFRSR spectral sensitivity

Automated cloud screening

Screening parameter:

 τ – optical depth at 870 nm, $\tau_{const} = 0.2$ overbar = 5 min moving average

Automated cloud screening II

Enveloping technique to include data points between the initially selected that show similar optical depth values.

Upper curve: local maxima × 1.2, Lower curve: local minima / 1.2

Automated cloud screening III

11 September 2000 at SGP's E13

Comparison with AERONET

Retrieval algorithm

<u>Aerosol size model:</u> bimodal Gamma V = 0.2 both mod

$V_{eff} = 0.2$ both modes

Retrievals:

- Fine mode AOT and R_{eff}
- Coarse mode AOT (fixed $R_{eff}=1.5\mu m$)
- O₃ column
- NO₂ column
- Instrument calibration constants

Fine and coarse mode AOT

AOT retrievals (@ 870 nm) for 4 SGP EFs, Jan.-Dec. 2000.

Aerosol mode separation

Comparison with AERONET almucantar scan analysis at 870 nm (May 1998 to September 2000, 576 datapoints, SGP site Central Facility).

Pinatubo aerosols in 1993-97

Fine mode AOT (at SGP CF):

- strong seasonal variations;
- no interannual trend.

Coarse mode AOT:

- weak seasonal variations;
- strong trend in 1993-1995 due to fallout of volcanic aerosol particles injected in stratosphere during 1991 Mt. Pinatubo eruption.

Pinatubo aerosol is bimodal

J. Goodman et al. (1994), Evolution of Pinatubo aerosol near 19 km altitude over western North America, JRL, 21, 1129-1132

NO₂ and ozone

NO₂ column amount (DU) for SGP CF 1993-1997

Ozone column amount (DU)

Spatial variations of fine R_{eff}

Correlative sampling data

NO₃/SO₄ ion concentration ratios (year 2000) from NADP/NTN precipitation monitoring sites.

PM2.5/PM10 ratios (year 2000) from EPA monitoring sites.

NO₃ and SO₄ concentrations

NO₃ and SO₄ ion mass concentrations measured at SGP CF in 2000 by NOAA Pacific Marine Environmental Lab (PMEL)

NO_3/SO_4 conc. ratios v.s. R_{eff}

NO₃/SO₄ submicron mass concentration ratios (SGP CF, 2000).

Fine mode aerosol effective radius retrievals from E13, 2000 MFRSR dataset (0.2 μ m is the detection limit).

NO_3/SO_4 conc. ratios v.s. R_{eff}

 NO_3/SO_4 submicron ion mass concentration ratios v.s. fine mode aerosol R_{eff} retrieved from MFRSR data. Ion mass ratios less than 0.05 are set to zero to reflect 0.2 µm limit in size retrievals.

Conclusions

Features of automated algorithm for MFRSR data:

- Automated cloud screening
- Separation between fine and coarse aerosol modes
- Estimation of fine mode effective radius
- NO₂ and O₂ column retrievals
- Planned addition of Water Vapor retrievals
- Instrument calibration is determined from the data
- Output in ARM-like netCDF format