

Decoupling aerosol and ground reflection signals in urban areas using spatial regression between V/NIR and MIR Hyperion channels

- Aerosol operational algorithms often assume constant correlations between the ground reflectance in the VIS and MIR channels which may not hold under different viewing and land surfaces conditions.
- Urban areas in particular do not fit the traditional correlation models.
- Improve aerosol retrieval and test ground reflectance correlation in urban areas with high spatial resolution sensors (Hyperion on EO-I satellite, and AVIRIS on aircraft)

B. Gross, F. Moshary, S. Ahmed CCNY B. Cairns (NASA-GISS) R. Green (JPL-AVIRIS Data), S. Ungar T. Brakke (GSFC-Hyperion Data), Students: M. Hagigeorgiou, O.Ogunwuyi (Ugrad CCNY)

Application and validation of ground reasons reflectance correlations (MODIS over vegetation)

1) Correlation between ground reflection for different channels will result in correlations at the TOA

$$\rho_{vis}^{TOA} \approx m \rho_{MIR}^{TOA} + \rho_{vis}^{Atm}$$

2) This can be used to separate ground and atmosphere components by plotting the MIR and VIS reflectances and determining their regression coefficients Y intercept gives atmospheric reflection while slope (m) is proportional to the ground correlation $C(470) \sim .18$ $C(660) \sim .47$

NOAA CREST

Probing aerosol retrieval and ground correlations over urban scales

New York observed through Hyperion (30 meter resolution)

Regions of interest include vegetation (central park – green), Urban areas (red-black) the river (orange), and lower manhattan

Correlation Coefficient vs wavelength

Urban environments have many wavelength independent reflection (geometric) mechanisms that improve the correlations between the VIS and MIR channels

Note a sharp difference for lower Manhattan due to shadowing /urban effect

Hyperion Retrieval of Aerosol Reflection over heavy urban zone

Ground reflection correlation frequency histogram No angle dependence (Lambertian) assumption

Correlation larger than MODIS assumption of 0.5

Manhattan correlation coefficient > Full scene could explain overestimated MODIS Optical Depth

Conclusions

- Validation between NASA Aeronet and Hyperion aerosol reflectance spectra performed.(Low Optical Depth single scattering regime)
- Shadowing effects in heavily urban areas are shown to increase the spectral range of the decoupling process allowing aerosol retrieval from 400nm to 900nm
- Water leaving radiances in the spectral range of 400-900nm were obtained by eliminating the aerosol reflectance directly illustrating the improved aerosol retrieval with shadowing (especially above 700nm) in additional slides
- Calculations underway to assess BRDF effects on correlation coefficient values.

NOAACREST

Additional Slides

Surface correlations from Landsat and AVIRIS

Water leaving radiance using AVIRIS

(subtracting ground decoupled atmosphere signal from total water signal)

Variability capture

June 1-June 30 5 hour mean

MODIS

again

National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center

Over NYC – Brookhaven June

AOT Shadowband

NOAA CREST

MODIS Real Color Image

Test of cloud mask set to find all possible land pixels

Near NYC

NOAA CREET

Total Transect

470

660

NOAA CREET

Coupling between slope and intercept

Horrible correlation (anticorrelation???)

MODIS AOT

Ground reflection model (model 1 lambertian)

$\% Dev = \frac{Q_nor_model(2:8) - Q_nor_model(1)}{Q_nor_model(1)}$

% of Deviation

Cosine (Sun angle)