ABSORPTION from AERONET : Accuracy, Issues, Improvements

<u>O. Dubovik</u>¹, B. N. Holben¹, T. F. Eck¹, A. Smirnov¹, T. Lapyonok¹, A. Sinyuk¹, M. Sorokin¹, D. Tanre², P.Goloub², I. Slutsker¹ and D. Giles¹

> 1- Goddard Space Flight Center, NASA (AERONET) 2- Université de Sci. et Tech. de Lille , France (PHOTON)

The averaged optical properties of various aerosol types (Dubovik et al., 2002, JAS)

ABSORPTION of SMOKE

flaming combustion Rio Branco, Brazil

smoldering combustion Quebec fires, July 2002

Retrieved Properties of Saharan DustAngstrom < 0.75</td>Dubovik et al., 2002

Comparison of Asian Dust Single Scattering Albedo

AERONET Observations of Asian Dust Single Scattering Albedo

0.86

400

500

600

700

800

Wavelength (nm)

900

1000

1100

Eck et al., submitted

1000

1100

900

Comparioson of Asian dust in different locations and different years

Single Scattering Albedo

0.88

400

500

600

700

800

Wavelength (nm)

dV/d (ln r) [$\mu m^3/\mu m^2$]

Urban Pollution in Beijing

Eck et al, accepted

GSFC, Paris, Mexico City, Maldives data from Dubovik et al. [2002] Table 1.

Accuracy ???

CC.

$\Delta \tau$ bias influence at $\Delta \omega_0$

τ

Retrieval using combinations of up-looking Ground-based and down-looking satellite observations

<u>Aerosol Properties:</u>

- size distribution
- real ref. ind.
- imag. ref. ind
- (AERONET sky channels)

Surface Parameters:

-BRDF (MISR channels) -Albedo (MODIS IR channels)

Wavelength (μ m)

Validation

Studies of:

- Haywood, et al. (2003,...
- Muller, et al. (2003, 2004)
- Reid, et al. (2003, 2004?)
- Mallet, et al. (2003, 2004,...)
- Osborne, S. R., J.M. Haywood, et al. (2004)
- Shuster G., et al.
- P. Formenti, et al.
- S. Despiau, Mallet, et al
- M. Companelli, et al.

Error estimates:

Important Error Factors:

- Aerosol Loading
- Scattering Angle Range
- Number of Angles (homogeneity)
- Number of spectral channels
- Aerosol Type

etc.

(3)

New strategy: Errors are to be provided in each single retrievals for all retrieved parameters

Rigorous ERRORS estimates: General case: <u>*large number of unknowns*</u>

and redundant measurements

$$\left\langle \left(\Delta \hat{x}_{i}\right)^{2} \right\rangle \approx \left\langle \left(\Delta \hat{x}_{i}^{random}\right)^{2} \right\rangle + \left(\Delta \hat{x}_{i}^{bias}\right)^{2}$$
$$\mathbf{C}_{\Delta \hat{\mathbf{x}}^{random}} = \left(\mathbf{U}^{T}\mathbf{C}^{-1}\mathbf{U}\right)^{-1} \qquad \Delta \hat{\mathbf{x}}^{bias} = \left(\mathbf{U}^{T}\mathbf{C}^{-1}\mathbf{U}\right)^{-1}\mathbf{U}^{T}\mathbf{C}^{-1}\Delta \mathbf{I}^{bias}$$

 $\boldsymbol{\mathsf{U}}$ - matrix of partial derivatives in the vicinity of solution $~~\hat{\boldsymbol{x}}$

Above is valid:

- in linear approximation
- for Normal Noise
- no a priori constraints

ERRORS estimates with <u>a priori constraints</u>

$$\mathbf{C}_{\Delta \hat{\mathbf{x}}^{random}} = \left(\mathbf{U}^{T} \mathbf{C}^{-1} \mathbf{U} + \mathbf{U}_{a}^{T} \mathbf{C}_{a}^{-1} \mathbf{U}_{a} \right)^{-1}$$

$$\Delta \hat{\mathbf{x}}^{bias} = \left(\mathbf{U}^T \mathbf{C}^{-1} \mathbf{U} + \mathbf{U}_a^T \mathbf{C}_a^{-1} \mathbf{U}_a \right)^{-1} \left(\mathbf{U}^T \mathbf{C}^{-1} \Delta \mathbf{I}^{bias} + \mathbf{U}_a^T \mathbf{C}_a^{-1} \Delta \mathbf{I}_a^{bias} \right)$$

ISSUES:

- in linear approximation
- for Normal Noise
- strongly dependent on a priori constraints
- very challenging in most interesting cases

Examples of error estimates

AERONET inversion developments

Forward model:

- accounting for particle shape
- using non-lambertian surface
- modeling polarization

Output improvements:

- detailed phase function
- degree of polarization
- flexible separation of modes
- fluxes and forcing
- details of fitting (biases and random)

Retrieval flexibility:

- additional spectral channels
- different geometries

Inversion of combined data:

- different geometries
- combining with satellite
- combining with aircraft

Errors estimation:

- -for individual retrieval
- -for absorption optical thickness
- -for phase functions, etc.

Perspectives:

- assuming bi-component aerosols
- combining with polarimetric satellite observations
- retrieval of shape distribution

Fine and Coarse modes separations

Beijing aerosol

Flexible separation between fine and coarse modes (currently: ~0.6 μm)

02:05:2003,09:27:51,PolarPP,Beijing,14