ISCCP cloud data

Bill Russow

NASA-GISS

available products (1)

- Products now
 - Cloud cover
 - Cloud top pressure
 - Cloud optical thickness
- temporal / spatial resolution
 - 3hr, 30km
 - 3hr, 280km
 - monthly, 280km
- time-period
 - 7/1983 to now and proposed to 2010

available products (2)

- Products in near the future
 - (daily) cloud particle size
 - Cloud type co-locators
 - Mesoscale convection
 - Mid-latitude cyclones
- Complementing data-sets
 - AVHRR (Pathfinder)
 - HIRS
 - Wisconsin
 - 31
 - Surface observations
 - SAGE (for upper troposphere)

product accuracy

overall (globally, annually)

Cloud cover

- < 10% instantaneously</p>
 < 3% monthly</p>
- missed thin cirrus 5-10% additionally
- Cloud top pressure
 - < 100mb instantaneously</p> < 50 mb monthly
 - bias: low for marine stratus / high for 2-layer clouds
- Cloud optical depth
 - <15% instantaneously</p>

<7% monthly

- not available during winter and polar night
- note:
 - reduced accuracy in polar regions
 - Information on upper layer only

aerosol complement?

- Now
 - **No**
- Future
 - Maybe:
 - when data on aerosol and clouds can be associated at smaller than synoptic time scales (< 1 day)
 - LEO is not good enough
 - GEO is promising (e.g. MSG every 15min)

what data should be used?

- for cloud processes:
 - use all available data-sets
 - products with most detail on clouds lack temporal resolution
 - products with better time-resolution have limited cloud info
- for cloud system evolution
 - use data-set with both
 - (1) better time-resolution, (2) better time record length (ISCCP has smallest time-sampling and longest data-record)
- for general circulation
 - use data-sets with both
 - (1) global coverage, (2) long time record length (ISCCP has the longest record with global coverage)

accuracy by cloud type

- Cloud droplet eff.radius
 - Liquid: +/- 1μm
 - Ice: +/- 7μm
 - radiometric calibration might cause add. 2 μ m uncertainty
- Cloud optical depth
 - Liquid: +/- 10%
 - Ice: +/- 15% (3D-effects, ice-crystal size uncertainty)
- Cloud albedo
 - Liquid: +/- 5%
 - Ice: +/- 5%

size - representation

- 'MEAN' refers to mass average
- Optical methods

[size is retrieved from the uppermost opt.thickn. (τ: < 3)] *Underestimate:*

- 50% for clouds with optical thickness < 5</p>
- 75% for clouds with optical thickness <15</p>
- Combined optical methods and microwave methods
 Good size estimates possible for liquid water clouds (may also indicate drizzle onset)