

MISR and Cloud Properties

aerosol indirect effect

Roger Davies

\blacksquare

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109

introduction

 MISR cloud capabilities ◆ measurement characteristics ◆ cloud products cloud heterogeneity examples cloud liquid water examples on the indirect effect

MISR measurement characteristics

 multi-angle (9 discrete angles, 0°– 70°, pushbroom) high spatial resolution ([≈]275 m) narrowband spectral radiances ◆ blue, green, red, near infrared ◆ well-calibrated ◆ 14 bit (good dynamic range) [≈]5-year record sun-synchronous (≈10:30 am)

MISR cloud products

 co-registered cloud-top radiances ◆ 2.2 km resolution ◆ at level of maximum contrast stereo-derived products ◆ cloud-top heights ◆ cloud-tracked winds ◆ geometrically based no calibration drift

wind and height accuracy

 E-W wind component ◆±1 m/s rms over 70.5 km N-S component \blacklozenge ± 2 m/s rms (to be confirmed) ■ Height \blacklozenge ± 200 m rms (to be confirmed) over 70.5 km (i.e. for wind) \div ± 500 m rms over 2.2 km

more products

- consensus cloud classifiers
	- \bullet spatial signatures
	- \bullet angular signatures
	- ◆ radiometric thresholds
	- ◆ stereo heights
	- \bullet support vector machine assisted
- albedos
	- \blacklozenge local (2.2 km)
	- \bullet regional (35.4 km)
		- expansive (toa), restrictive (top of cloud)
	- \bullet spectral and broadband

classifier example

Garay et al., AMS 2005

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

MISR albedo status

spectral albedos

- \bullet problems with anisotropy at high latitudes (low sun angle)
- ◆ require improved stochastic weights
- broadband albedos
	- ◆ should get within ±3 W m⁻²
- local albedos to be collated by cloud type (esp. height and phase)

more MISR cloud products

 cloud optical depth cloud effective radius cloud liquid water

…not

Hybrid Cell Scenario

- brf: 0.25 0.85 in 15 km
- optical depth: 7 70
- cloud top height differential: < 500 m
- degrees of freedom: number density, droplet size, cloud thickness
- cannot be explained by a single dof

An explanation that works

single-angle approach to τ

 solar zenith angle bias \leftrightarrow overestimate spatial heterogeneity bias ◆ underestimate inconsistent anisotropy ◆ overestimate saturation bias ◆ underestimate

homogeneous cloud example

1 December 2004 AEROCOM meeting/GISS 15

Horvath and Davies, GRL '04

EXAMPLES-1

Hc~5km Hc~2km Hc~2km

EXAMPLES-2

SZA=47 °Hc~12 km

heterogeneous cloud example

single-angle 1D retrieval

truncated at τ = 50, from MISR nadir radiances, 14 Terra orbits

Boundary Layer Clouds All 22 Cases (MISR, non-raining, water only, mean)

Boundary Layer Clouds All 22 Cases (MISR, non-raining, water only, rms)

Deep Convective Clouds All 22 Cases (MISR, WP>300 g/m 2, Re=Re(RR))

general thoughts

- toa radiances and albedos generally quite good
	- \bullet spectral and broadband
	- \bullet can be related to cloud types
- cloud heights and areas also quite good
- trends possible
	- \bullet radiometric calibration drift limits much of current record
	- \bullet geometric based trends more reliable

cont.

 global cloud properties appear quite problematic ◆ thick clouds especially poor heterogeneity effects dominate possible to cherry-pick ◆ seek thinner clouds ◆ seek homogeneous clouds

global cloud liquid water estimates

theoretical estimates of global cloud types

The problem with microwaves

adapted from Masunaga et al., *J. Geophys. Res.,* 2002

Caution: do not attempt over land

100 km

MISR high resolution imagery

nadir image

270x230 km

Equatorial West Pacific

MISR high resolution imagery

60° oblique image

270x230 km

Equatorial West Pacific

multi-angle approaches to τ

 using MISR for example ◆ 9 pushbroom cameras nadir ± 26° views for stereo ◆ cloud geometry (top and side) 45°–70° views of side reflectivity approach 1: match full 3D approach 2: gradient analysis using a reciprocal TIPA (tilted independent pixel approximation) approach

3D approach

 Zuidema et al., JGR '03 use unsaturated nadir measurements + stereo geometry to initialize model compare MC output with observationsiterate for consistency

MISR cloud top height field for the Zuidema et al 03 study

optical depths from the Zuidema et al. '03 study

reciprocal-TIPA approach

- much simpler than full 3D
- uses slant path in direction of viewing angle (reciprocal TIPA) (Várnai & Davies, JAS 99)
- adapts to the geometry of convective clouds
- relates gradient in radiance near cloud edges to slant path geometry
	- \bullet extinction coefficient, β vs height
	- $\bullet\,$ integrate over height to get τ

static views from nadir and oblique cameras of the same cloud

- Ca is the sunlit side
- 60° oblique view

analysis

 cloud geometry [≈] 5 km wide [≈] 10 km deep reciprocal TIPA analysis: $\div \tau_{h}$ > 25, τ_{v} > 100 \blacklozenge β (ext. coeff.) > 5-10 km⁻¹ \blacksquare gradient analysis of unsaturated τ \blacklozenge β ≈8 km⁻¹ at top, ≈22 km⁻¹ at base

retrieval summary

thicker cloud case

 vertical extent ≈ 11 km very bright nadir view alone \triangle τ > 60 preliminary analysis indicates \triangle τ > 300