

MISR and Cloud Properties

aerosol indirect effect

Roger Davies

JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109

introduction

MISR cloud capabilities
measurement characteristics
cloud products
cloud heterogeneity examples
cloud liquid water examples
on the indirect effect

MISR measurement characteristics

multi-angle (9 discrete angles, 0°-70°, pushbroom) high spatial resolution (\approx 275 m) narrowband spectral radiances blue, green, red, near infrared well-calibrated 14 bit (good dynamic range) ≈5-year record sun-synchronous (≈10:30 am)

MISR cloud products

co-registered cloud-top radiances 2.2 km resolution at level of maximum contrast stereo-derived products cloud-top heights cloud-tracked winds geometrically based no calibration drift

wind and height accuracy

E-W wind component ◆ ±1 m/s rms over 70.5 km N-S component $\bullet \pm 2$ m/s rms (to be confirmed) Height ± 200 m rms (to be confirmed) over 70.5 km (i.e. for wind) ◆ ± 500 m rms over 2.2 km

more products

- consensus cloud classifiers
 - spatial signatures
 - angular signatures
 - radiometric thresholds
 - stereo heights
 - support vector machine assisted
- albedos
 - local (2.2 km)
 - regional (35.4 km)
 - * expansive (toa), restrictive (top of cloud)
 - spectral and broadband

classifier example

Garay et al., AMS 2005

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

MISR albedo status

spectral albedos

- problems with anisotropy at high latitudes (low sun angle)
- require improved stochastic weights
- broadband albedos

should get within ±3 W m⁻²

local albedos to be collated by cloud type (esp. height and phase)

more MISR cloud products

cloud optical depthcloud effective radiuscloud liquid water

...not

Hybrid Cell Scenario

- brf: 0.25 0.85 in 15 km
- optical depth: 7 70
- cloud top height differential: < 500 m
- degrees of freedom: number density, droplet size, cloud thickness
- cannot be explained by a single dof

An explanation that works

	dark	bright
optical depth	7	70
effective radius	10 µm	15 µm
number density	50 cm ⁻³	100 cm ⁻³
thickness	250 m	500 m

single-angle approach to $\boldsymbol{\tau}$

solar zenith angle bias overestimate spatial heterogeneity bias ♦ underestimate inconsistent anisotropy overestimate saturation bias ♦ underestimate

homogeneous cloud example

AEROCOM meeting/GISS

1 December 2004

15

Horvath and Davies, GRL '04

Hc~2km

Hc~5km

1 December 2004

AEROCOM meeting/GISS

Hc~2km

EXAMPLES-2

SZA=47° Hc~12 km

heterogeneous cloud example

single-angle 1D retrieval

truncated at τ = 50, from MISR nadir radiances, 14 Terra orbits

Boundary Layer Clouds All 22 Cases (MISR, non-raining, water only, mean)

Boundary Layer Clouds All 22 Cases (MISR, non-raining, water only, rms)

Deep Convective Clouds All 22 Cases (MISR, WP>300 g/m², Re=Re(RR))

general thoughts

- toa radiances and albedos generally quite good
 - spectral and broadband
 - can be related to cloud types
- cloud heights and areas also quite good
- trends possible
 - radiometric calibration drift limits much of current record
 - geometric based trends more reliable

cont.

global cloud properties appear quite problematic
thick clouds especially poor
heterogeneity effects dominate
possible to cherry-pick
seek thinner clouds
seek homogeneous clouds

global cloud liquid water estimates

theoretical estimates of global cloud types

The problem with microwaves

adapted from Masunaga et al., J. Geophys. Res., 2002

Caution: do not attempt over land

1 December 2004

100 km

1 December 2004

MISR high resolution imagery

nadir image

270x230 km

Equatorial West Pacific

MISR high resolution imagery

60° oblique image

270x230 km

Equatorial West Pacific

multi-angle approaches to $\boldsymbol{\tau}$

using MISR for example ♦ 9 pushbroom cameras nadir ± 26° views for stereo cloud geometry (top and side) 45°–70° views of side reflectivity approach 1: match full 3D approach 2: gradient analysis using a reciprocal TIPA (tilted independent pixel approximation) approach

3D approach

Zuidema et al., JGR '03
use unsaturated nadir measurements + stereo geometry to initialize model
compare MC output with observations
iterate for consistency

MISR cloud top height field for the Zuidema et al 03 study

optical depths from the Zuidema et al. '03 study

reciprocal-TIPA approach

- much simpler than full 3D
- uses slant path in direction of viewing angle (reciprocal TIPA) (Várnai & Davies, JAS 99)
- adapts to the geometry of convective clouds
- relates gradient in radiance near cloud edges to slant path geometry
 - extinction coefficient, β vs height
 - integrate over height to get τ

static views from nadir and oblique cameras of the same cloud

- Ca is the sunlit side
- 60° oblique view

analysis

cloud geometry ♦ ≈ 5 km wide ♦ ≈ 10 km deep reciprocal TIPA analysis: $\bullet \tau_{\rm h} > 25, \tau_{\rm v} > 100$ • β (ext. coeff.) > 5–10 km⁻¹ gradient analysis of unsaturated τ • $\beta \approx 8 \text{ km}^{-1}$ at top, $\approx 22 \text{ km}^{-1}$ at base

retrieval summary

	nadir only	multi-angle
cloud vertical extent	no information	10.5±0.8 km
extinction coefficient	no information	8–22 km ⁻¹ (higher at base)
cloud optical depth	> 60	150±30

1 December 2004

1 Deceminer 2004

thicker cloud case

vertical extent \approx 11 km very bright nadir view alone $\diamond \tau > 60$ preliminary analysis indicates $\diamond \tau > 300$