Satellite-derived warm rain fraction as constraint on the cloud
lifetime effect
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Precipitation Liquid-topped clouds Ice clouds

High radar reflectivity of rain High lidar backscatter at cloud High radar reflectivity of ice
drops top from liquid droplets particles
— CloudSat CPR via — CALIOP via — CPR via DARDAR_MASK
2C-PRECIP-COLUMN or DARDAR_MASK

DARDAR_MASK

affer Rosenfeld et al. (2008), Science



Rain from pure liquid clouds (“warm rain”) is very rare over the
extratropical continents
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AeroCom project proposal
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Aerosol influence mainly acts on autoconversion in liquid-water clouds in current models

The more precipitating warm clouds are simulated in a model, the more opportunity aerosols
have to influence the precipitation microphysics

We hypothesize that the strength of the cloud lifetime effect in models is therefore related to
the warm-rain fraction

This hypothesis can be tested in the AeroCom models

Comparing warm-rain fraction in models against satellites may provide an observational
constraint on the cloud lifetime effect
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Warm-rain fraction in observations and GCMs



Compare satellite climatology to CMIPS cfSites




Compare satellite climatology to CMIP5 cfSites
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Compare satellite climatology to CMIP5 cfSites
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Modeled warm-rain fraction is diverse

ECHAM-HAM
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Outline

Tuning the warm-rain fraction in ECHAM-HAM



Scale factor on autoconversion rate: 107 x Qg reproduces observations

KK(2000) autoconv with scale factor Satellite
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Threshold on autoconversion: r, > 20 pm
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KK(2000) autoconv with r, threshold Satellite
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These modifications are related

Khairoutdinov and Kogan (2000): losoa oo
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Effect on energy fluxes

» Reducing the warm-rain fraction ceraut
significantly detunes the TOA .
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Effect on precipitation intensity distribution

» Reducing the warm-rain 0<|d<30 30<|g/<60 60<|g<90
fraction also increases the 0.8+ . le-07
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Tuning the warm rain fraction in ECHAM-HAM: conclusions

» Satellite warm-rain fraction can be reproduced in ECHAM-HAM by multiplying the
Khairoutdinov and Kogan (2000) autoconversion rate by 10~4 (default ECHAM-HAM
tuning factor: 4)

» Alternative fo this drastic scale factor: r, > 20um threshold on autoconversion
» Effect on radiative balance is large (large increase in cloud lifetime)

» Reducing the warm-rain fraction to match the satellite climatology also increases the intensity
spectrum

» (Some remaining uncertainty on these numbers because of parameter choices in diagnosis of
warm-rain fraction)
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Interactions between the warm-rain fraction and ERFq;



Influence of the warm-rain fraction on ERFge,

Results for ECHAMG.1-HAM2.2, AeroCom Il 1850/2000 emissions

ccraut | SWPD —PIWm2) [ IWPD —PIWm=2) | SW + W PD — PI (W m )
4 (default) -2.1 1.0 —1.1
104 —-1.6 0.72 -0.86

» As hypothesized, the configuration with lower warm-rain fraction has a smaller ERF e,

» The change is —0.5 W m~2 SW offset by 0.3 W m~2 LW = plausible that ERF,; change is
a large contribution

» (Low-ccraut configuration has not been retuned and ERF,; has not been diagnosed
separately from ERF e, yet)



Influence of the lifetime effect on warm-rain fraction

» CAMS5 runs with and without
cloud lifetime effect

» In SE and NE Pacific and Atlantic,
lifetime effect decreases the
warm-rain fraction, as expected
from drizzle suppression
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» However, there are also regions
where the warm-rain fraction
decreases

ajijou
v

Results are very preliminary (still
based on non-standard diagnostic
algorithm while some more files
transfer)
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Preliminary conclusions on the relationship between warm-rain fraction
and aerosol effects

v

Changing the warm-rain fraction (in ECHAM-HAM) changes the ERF;
= As anticipated, warm-rain fraction is sensitive to aerosol effects

v

Lots of model diversity; this observable has not been tuned to death
= May be useful as an observational constraint

v

Next step: investigate relationship between warm-rain fraction and ERF,; across models

» Participation by other models welcomel!

= Required output: snow and rain mixing ratio/flux/path, non-accumulated field, ideally
3h; preferably for a model configuration with known ERF,;



Change of subject: response to Stevens (2015)
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Summary

» Warm-rain fraction is very low over continents (especially extratropical NH); details:
Milmenstadt et al. (2015), Geophys. Res. lett. 42 (15), 6502-6509,
doi:10.1002/2015GL064604

» Warm-rain fraction can be diagnosed in GCMs and may serve as an observational
constraint on precipitation-related processes (including aerosol cloud lifetime effect)

» In ECHAM-HAM, agreement with satellite warm-rain fraction can be achieved with either a
drastic rescaling of KK2000 autoconversion or a less drastic r, threshold

» Either method of tuning the warm-rain fraction intensifies the precipitation intensity spectrum
and decreases the ERF 4
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