


Satellite Aerosol Retrieval Limitations

e Difficult to retrieve aerosols that are collocated with cloud
-- Cloud-scattered light & cloud “contamination” can affect near-cloud aerosol retrievals
-- Aerosols can also affect the retrieval of cloud properties

e Rarely can detect aerosol in droplet-formation region below
clouds — need cloud & aerosol vertical distributions

e Aerosols smaller than about 0.1 micron diameter 100k like
atmospheric gas molecules — must infer CCN number

e Must deduce aerosol hygroscopicity (composition) from
qualitative “type” — size, shape, and SSA constraints

e Environmental (Meteorological) Coupling — Factors can co-vary

-- LWP can decrease as aerosol number concentration increases (also depends on atm. stability)

e Many aerosol-cloud interaction time & spatial scales do not match
satellite sampling (horizontal & vertical res., snapshots, coverage)

Satellites are fairly blunt instruments
for studying aerosol-cloud interactions!!




Aerosol Properties Near Cloud
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Refl. in “clear” pixels
used for MODIS AOD
Retrievals (squares)

Refl. in pixels 3 km
away from cloud (ovals)
[Wen et al. 2007]
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3-D Light Scattering Effects on Remote Sensing
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Simulated cloud = Rayleigh
scattered light enhancement vs. t,
* Using the image geometry
* For three wavelengths
* For different surf. reflectances (a,)

Marshak et al., JGR 2008



Correlation Between AOD from Space and CCN
in Remote & Polluted Regions
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Using Al (= 7, x ANG) to Estlmate C CN

Kapustin, Clarke, et al., JGR 2006

e Test Idea: Smaller particles more likely to become
CCN; Ang is a smaller quantity for larger particles
e ACE-Asia, Trace-P in situ field data — CCN proxy
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Satellite-Derived Proxies for CCN
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e OMI UVB (310 nm) Surface noontime irradiance to form secondary sulfate

* MODIS AOD [attempt to represent the condensation sink for nucleation particles]

These are quantities we can retrieve from satellites,
though they are not necessarily the ones we really want

—> Ambiguity in vertical distributions of formation areas and sinks

—> Lack of information about diurnal variation from satellites

—> The 2-D spatial distribution of proxies compares ~ better with in situ observations
for S. Africa, except where gas column concentrations are low



Satellite Capabilities

 Polar orbiting imagers provide frequent, global coverage

 Geostationary platforms offer high tempeoral resolution

e Multi-angle imagers offer aerosol plume height & cloud-top mapping
e Passive instruments can retrieve total-column aerosol amount (AOD)
e Active instruments determine aerosol & some cloud vertical structure
e UV imagers and active sensors can retrieve aerosol above cloud

e Multi-angle, spectral, polarized imagers obtain some aeroseol type info.
e Active sensors can obtain seme aerosol type info., day & night
e Satellite trace-gas retrievals offer elues about aerosol type

* Vis-IR imagers can retrieve cloud phase,r,, T, p,, T, & ., C, LWP

Need to be creative &
Play to the strengths of what satellites offer!!




“Cloud-Chamber”’ Satellite CCN Retrieval

o Aircraft measurements in a cluster of deep convective
5000 clouds over India
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Figure 9. The adiabatic effective radius as a function of height
above cloud base (D) for clouds with various number of cloud
drop concentrations at their base, for cloud base at a height of
2km and temperature of 15°C. Actual aircraft measurements of 1s re
are shown for a cloud that had 610 drops cm > at its base. From
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For Aerosol-Cloud Interactions —
Overall Satellite Limitations

e Polar orbiters provide snapshots only

e Difficult to probe cloud base

 Typically ~100s of meters or poorer horizontal resolution

e Passive instruments (imagers) offer little vertical information
 Active instruments (e.g., lidar) offer little spatial coverage

e Little information about aerosol particle microphysical properties
 Bigger issues retrieving aerosols in the presence of clouds!

e Cloud property retrievals can be aliased by the presence of aerosols



Aerosol Properties Near Cloud

CALIPSO nighttime 532 nm backscatter,
normalized over 2.99 km.
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