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How do we know models are right?

All models are wrong, some are useful:
models are fit for purpose

e How wrong are they? Or: what do we need to
improve? Compare to observations

e Testable hypothesis: A modelis valid (against
an observation) if itis not statistically different
from the observation

— Easy: As long as we know the statistics of the
models and observations



First: Sampling Issues

e Samplingissues need to be handled first
e E.g.: daytime or ocean only observations

— Note daytime = seasonal cycle in polar regions

e Recall talks yesterday by Andrews and
Schutgens



From N. Schutgens

Representativeness of observations

Sampling error

o

Model error

Schutgens et al ACP 2016a



Sampling: other issues

Not just location and time

Sampling is radiometric, can be masked and
has a vertical component

E.g.: averaging kernels (vertical structure)
Masking (clouds)
Spectral signature and thresholds

— Different satellites see different things, not just
geometry



Statistics

e Assuming we solve sampling issues, then is a
model different than observations?

MM, = 1\,'11_ +— Difference of two sample means
I 2

e Difference depends on the statistics (o) of both
model and observations

e Tell us the range in which truth lies. That tells us
how certain we are (or not)
— Don’t sugar coat it

— Qualitative reasoning is fine, maybe better than too
much error propagation



What quantities do we need to know?

e Stefan showed AOD

e Do wereally want AOD? Or is it what we get?
— When it differs what do we do?
— Lots of physical factors built into a result
— Surface downward radiation is another example
 Need to figure out what are the important
metrics
— Compare to what we can observe
— Try to get observations for what we need

— Then: go to process based metrics. Constrain the
underlying model physics



Simulating observations (and error)

e |f uncertainties are large (e.g. AOD), then let’s
reduce them. Together.

e First eliminate the (spatial) sampling bias

e Then make sure the model can ‘simulate’ the
observations (averaging kernel, masking etc)
— This requires a forward model (e.g. Lidar
equation)
 Then drill down to components (e.g. of AOD)
— E.g.: aerosol optical properties



Systematic Variability
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- preferential scavenging of large, scattering aerosol by clouds/precipitation?

The co-variance observed between SSA and scattering for in-situ data is not
necessarily reproduced by model output

From Betsy Andrews



Thoughts for Discussion

Uncertainties can be reduced with sampling
— Spatial and Temporal

— Radiometric and Sensitivity

Tell us a best estimate of uncertainty

— Make it generous (no 3¢ changes!)

Let’s simulate the data with a forward model
— Think about a model in “data space”

What metrics are the right place to start?
— Are we even looking at the right thing?

— Modelers say we want X, but if you are really producing,
then just tell us Y really well. Don’t make X = f(Y).

— What metrics are grounded in physical process
understanding? Optical properties?



	Thoughts on the Use of Uncertainties in Models
	Slide Number 2
	How do we know models are right?
	First: Sampling Issues
	Slide Number 5
	Sampling: other issues
	Statistics
	What quantities do we need to know?
	Simulating observations (and error)
	Slide Number 10
	Thoughts for Discussion

