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What is a PPE?

A Perturbed Parameter Ensemble designed in such a way that we
can map the response surface of a model using emulators

Model runs
e a An emulator is a fast )
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What can we do with a well designed PPE?

1) Very efficiently explore single and multiple process
sensitivities and interactions

Boundary layer
nucleation
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Lee, L.A. et al., The magnitude and causes of uncertainty in global
model simulations of cloud condensation nuclei, ACP 2013.
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What can we do with a well designed PPE?

2) Quantify uncertainty in model responses
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Johnson, J. et al., Evaluating uncertainty in convective cloud &
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What can we do with a well designed PPE?

3) Quantify model uncertainty by Monte Carlo sampling
from the response surface
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What can we do with a well designed PPE?

3) Quantify model uncertainty by Monte Carlo sampllng
from the response surface e
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Carslaw, K.S. et al. Large contribution of natural aerosols to T
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What can we do with a well designed PPE?

Model output
(e.g., cloud albedo)
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4) Constrain the model against measurements

o
Y

o
.5

frequency

0.008

0.006

0.004

0.002

0.000

~ N Atlantic CCN
"' constrained against
measurements

e S

0 200 400 600
CCN/cm3

UNIVERSITY OF LEEDS




What have we done so far with GLOMAP?
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What's the cost?

 From our experience, you need ~10
simulations per perturbed parameter

e Linear scaling: so 100 runs for 10
parameters

e Qur studies have perturbed 28 and 31
parameters

 Climate model will perturb 27 parameters
related to emissions, microphysics and
optics, clouds, model physics

e But this delivers HUGE information
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Nudged single versus double call (1 month)

Fractional changes when SO, emissions perturbed
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What Is our
“uncertainty reduction methodology”?

Improve processes

Lots of state variables
(CCN, AOD, BC, etc) —>  Model skill

Not forcing
(a) Mace head, 3501,
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The best we can do

This is an enormous problem!
There will be many combinations

Many models covering all of plausible models

conceivable structural and
parametric uncertainties
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A definition of forcing uncertainty

* The range of predictions of a model accounting
for all possible uncertain model quantities
(parameters) and structures, after rejecting

models that are implausible compared to
measurements
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Steps towards exploring the full model
uncertainty space

Restricted to:

* A nudged global aerosol model (GLOMAP)
e Uncertain parameter values

» Aerosol processes and emissions

o 28 parameters related to aerosol
microphysical processes, removal rates and
emissions
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Multi-dimensional parameter sampling

800

3d - 28d

perturbations cover
28-dimensional
uncertainty space
of a global model

168 model runs
needed for 28
parameter
dimensions
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Pdfs of CCN In every grid box

This is not CCN variability, it’s parametric uncertainty in the monthly mean CCN state
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Albedo forcing and (prior) uncertainty
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ldentifying plausible models

NOTE:
measurements
define the
plausible
parameter
space, not the
magnitude of
each parameter

CCN
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Observationally constrained CCN and forcing
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Number of CCN measurements 6
(each with £30% uncertainty)

*Measurements” over S. Ocean
drawn from one ensemble member :
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Constrained CCN and forcing
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Prior and constrained distributions
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Constrained CCN and forcing
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Multi-dimensional uncertainty constraint

Parameter 1

Parameter 2
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Multi-dimensional uncertainty constraint

A slice through the 28-dimensional emulator in one grid box
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Equifinality o
quifinality —
divergence

Simulated aerosol
Parameter 1

\

time

Parameter 2

e In a model with many compensating uncertainties, there
are many ways to achieve equally plausible agreement
with state variable measurements — Equifinality

» Different parts of parameter space can evolve differently

e Forcing is a response to changes in emissions, so a well
constrained model state does not imply a well
constrained forcing

Keith Beven, A manifesto for the equifinality thesis, J. Hydrol. (2006). f
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What about multi-model ensembles?

Each model has chosen a single (presumably plausible)
location in multi-dimensional uncertainty space

Parameter 1
Parameter 1
Parameter 1

Parameter 1
Parameter 1
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Parameter 2
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Extension to cloud-scale processes

Uncertainty in precipitation susceptibility Scaled

Density
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RESEARCH ARTICLE Evaluating uncertainty in convective cloud microphysics using
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What can be done to make better progress?

 Treat uncertainty as the scientific problem to be
understood and solved

Uncertainty modeller Process modellers
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What can be done to make better progress?

 Treat uncertainty as the scientific problem to be
understood and solved

e Understand how state variable measurements constrain
uncertainty

— E.g., AOD, COD etc are likely to suffer from equifinality

e Understand how response measurements (e.g.,
dinN,/dInt) constrain uncertainty

e Determine how well our current observing systems
constrain uncertainty, not just how well a particular
model agrees with the measurements

« Work towards a small number of plausible models for
which we understand the uncertainties
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Summary

 Knowledge uncertainty reduction doesn’t match model
uncertainty reduction. This is partly due to a lack of
uncertainty reduction methodology

 Emulators enable the full uncertainty distribution of a
model to be quantified

* Forcing is not directly measureable. Observational
constraint of observable state variables doesn’t
constrain forcing as much as expected

Relative forcing constraint
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« With many uncertainties, there are many equally
plausible (equifinal) models within the uncertainty of
the measurements. Equifinal models diverge.
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Constrained CCN and forcing
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Constrained CCN and forcing
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What is the situation now?
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 Not a good
constraint on
model state
variables

* Not a good
constraint on
model responses
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Model skilfulness

Gavin Schmidt

The Emergent Patterns of
Climate Change (March 2014)

“Models are skilful if they tell you
more information than you had
otherwise.”

(i) Ozone hole effect on SLP
(i) T response to Pinatubo

(i) Solar cycle effects on ozone
(iv) 20t century T trends

(v) Etc...
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