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IMPORTANCE OF OZONE FOR CLIMATE D piverity o

» Tropospheric ozone constitutes the third-most important GHG contribution to
radiative forcing since 1750, after CO, and CH,.

» 3D-distribution important to capture regional forcing and consequent effects
on dynamics.
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RCPs AND TOTAL COLUMN OZONE S RE i

» Mix of future GHG emissions will determine the state of the ozone layer (with
CH, and N,O having opposing effects on stratospheric ozone chemistry).
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INDIRECT EFFECT OF OZONE DEPLETION ”R"G'_,V;rs'm‘éf
ON SURFACE CLIMATE

» The Antarctic ozone hole has altered the temperature structure of the
atmosphere, thereby affecting also the distribution of winds.
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OZONE RECOVERY MITIGATES CLIMATE < UR'ZVaeﬁiit.ﬁg
EFFECTS

« The ozone hole thereby affects tropospheric surface climate during austral
summer even outside SH high latitudes, including the tropics.
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« The ozone-hole induced surface wind changes have potential implications

for ocean circulation and carbon uptake (Cai & Cowan, J Clim 2007; Lenton
et al., GRL 2009)
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[#s4] University of

CHEMISTRY-CLIMATE COUPLING <~ Reading

« Climate change is expected to lead to a strengthening of the stratospheric
Brewer-Dobson circulation, which affects ozone and also other trace gases.
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CHEMISTRY-CLIMATE COUPLING <+ Reading

« Climate change is expected to lead to a strengthening of the stratospheric
Brewer-Dobson circulation, which affects ozone and also other trace gases.

* The predicted decrease in water vapour would lead to a weaker surface
temperature response to GHG forcing.

piControl (A, A1, A2)

4xC0O2 (B)

4xC0O2 (4xCO2 Chemistry) (B1, B2)
4xCO2 (piControl Chemistry) (C1, 5‘22)

0
g
&
G
i
o
:
:
g

_l. 1
o u

Surface Temperature Anomaly (" C)

150
Latitude (°) Model Year

Hegglin and Shepherd, Nature Geoscience 2009 Nowack et al., Nature Climate Change 2014

AeroCom/CCMI AerChemMIP workshop — ESRIN October 2015




IMPORTANCE OF STRATOSPHERIC H,0 < Reading

« Water vapour is the most important natural greenhouse gas in the atmosphere
and provides a positive feedback to the climate forcing from CO.,,.

» Asstratospheric water vapour trend of 0.4 ppmv/decade (as was apparently observed
over Boulder) over 1980-1997 would have led to global surface warming that was 44%
of that from CO, alone.

The assumed constant water vapour increase induces a strong latitudinal structure in
the cooling of the stratosphere - important for dynamical feedbacks

Changes are
largest in the

Forster & Shine, GRL 1999
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PAST EFFORTS B iy

« IGAC/SPARC ozone data base by Cionni et al. (2011)
* Merged fields from models with either stratospheric or tropospheric chemistry.
* Only one emission scenario into the future.
« Some unphysical behaviour was introduced by merging with observations.

50 hPa 35N-60N

1850 1890 1930 1970 2010 2050 2090
time

» Update required with CCMI models that include coupled stratosphere-
troposphere resolving chemistry.
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APPROACH TO CREATE DATABASES < Reading

* Need to produce ozone (and stratospheric water vapour) timeseries for
Earth-system models without interactive chemistry.

1) CCMI ozone forcing database:
» Tropospheric and stratospheric ozone fields (1000-0.01 hPa)
» 5-day averaged (pentad) timeseries between 1850 and 2100

» Set of comprehensive stratosphere-troposphere resolving chemistry-climate
model simulations

 Historical emissions and different emission scenarios (low, middle and high)
» Envisage scaling approach to be adaptable to new emissions scenarios.

2) Also suggested, CCMI water vapour forcing database:
» Stratospheric water vapour fields only (tropopause-0.01 hPa)
* Monthly timeseries between 1850 and 2100
« Same base simulations as for ozone described above.

* No merging with observations, but rigorous evaluation of models with
observations and weighting according to performance metrics.
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HOW COMPLEX TO MAKE IT? & Reading

« Approach is to keep it as simple as possible. If you want full complexity
you should be running a fully interactive model.

* In the stratosphere, the longitudinal structure arises from the dynamics,
so imposing it would lead to dynamical inconsistencies
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* No QBO.
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TIMETABLE » Reading
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SUMMARY AND OUTLOOK & Reading

* Pre-publication of data fields via CCMI webpage.
1850 fields to be posted by 31 December 2015.
« Will allow for ‘tuning’ model response in historical reference state.
Historical simulations to be posted by April 2016.
Future simulations to be posted by October 2016.
NetCDF files with common format
 Publication in ESSD with citable doi-number attached to the database.
» Meta-data will also be made available.
« Historical and future fields to be published by 31 December 2016.
 Contributions/input from more CCMI modelling teams welcome!

* Please emall to get involved.
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STRATOSPHERIC GHG DISTRIBUTIONS & D ivrsre!
CLIMATE

* Long-lived GHGs in the stratosphere affect both local temperatures and
surface climate -2 IPCC
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« GHGs contribute to warming of surface climate.
* In the stratosphere, most GHGs lead to a local cooling.
« Dynamical feedbacks from chemistry-climate coupling extend to the surface.
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STRATOSPHERIC H,0 CHANGES i ol
(late 1980s to 2010) ¥ Reading

Hegglin et al., Nature Geoscience 2014

* Trends in the lower to
mid stratosphere are
seen to be negative, not
positive as would be
inferred from the
Boulder record!

In the upper
stratosphere, the trends
are positive.
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The vertical structure in
the changes indicates

structural changes in the O
Brewer-Dobson Latitude
circulation.
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IMPORTANCE OF HALOCARBONS D pverstyof
AND FLUORINATED SPECIES

Reading

* Long-lived tracers can Stiller et al., ACP 2012
be used as age-of-air
indicators.
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- Note, need for long-term
observational records!
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