Recent Advances in Satellite Retrieval of Volcanic Ash Properties

^a Deutsches Zentrum f
ür Luft- und Raumfahrt, Institut f
ür Physik der Atmosph
äre, Oberpfaffenhofen, Germany
 ^b Johannes Gutenberg-Universit
ät Mainz, Institut f
ür Physik der Atmosph
äre, Mainz, Germany

* dennis.piontek@dlr.de

Knowledge for Tomorrow

Overview

Complex Refractive Indices of Volcanic Ashes

calculate possible

refractive indices

Result: Impact of

porosity

Refractive indices of volcanic ash exhibit large variability. How big is the impact of silica content, glass-to-crystal fraction and porosity?

Volume weighted averaging of refractive indices for different bulk silica contents x_s:

$$\begin{split} m_{eff} &= f_{void} \; m_{void} + (1 - f_{void}) \; m_{volc} \\ m_{volc} &= f_{glass} \; m_{glas} + (1 - f_{glass}) \; m_{min} \\ m_{min} &= \sum_{i} f_{min}^{i} \; m_{min}^{i} \end{split}$$

Now:

- bubble sizes mostly few microns (Sparks , 1978) \rightarrow f_{void} = 0 ٠
- $f_{glass} \sim x_s$ but up to $f_{glass} = 1$ (Vogel et al., 2017, Heiken, 1974) ٠
- $m_{void} = 1$ (Kylling et al., 2014) ٠
- f_{min}^{i} e.g. from Jerram & Petford, 2011; m_{min}^{i} from literature
- m_{glass} problematic as $x_{s,bulk} \neq x_{s,glass}$ (Mackie et al., 2016) \rightarrow . calculated by difference from lab measured m_{eff} (Deguine et al., 2020)

Piontek, Hornby, Voigt, Bugliaro, Gasteiger; submitted to J. Volcanol. Geotherm. Res.

Macrophysical Volcanic Ash Plume Properties

240

 10^{-1}

220 only channel 10.8 μ m

100

10¹

10²

mass column concentration / g/m²

0.6,6

0.6, 9 0.6, 12

3, 9

6, 9

 10^{4}

 10^{3}

can consist of multiple layers with non-uniform vertical profile. Also the thickness is not retrieved. How big is the uncertainty due to these factors?

Compare uniform ash layer (CTH=9km, thickness=1km, load=10g/m², Eyjafjalla ash with r_{eff}=0.6µm) with different settings

Result: profile negligible, otherwise variations up to $\sim 4K \rightarrow$ introducing significant error in retrieval!

Creation of Artificial Neural Networks

Here: comparison with CALIPSO retrievals of the Puvehue-Cordón Caulle ash plume above the Southern Atlantic (from Kar et al., WMO Intercomparison 2018). 2011-06-16 15:45:00 2.00 CALIPSO ັຍ 1.75 VADUGS2 VADUGS2 (5x5 px. avg.) concentration / 1.50 1.25 1.00 0.75 column 0.50 mass 0.25 0.00 14000 13000 E 12000 height / r 10000 do 9000 8000 7000 -48 -46-44-42 -40 latitude / °

Retrieval Performance

After training of neural networks: How is the performance with respect to unseen simulated test data?

Calculation of mean absolute percentage error (MAPE) and mean percentage error (MPE) between truth and prediction.

For optical depth=1, top height=10km:

~10 to 20% error

Result:

•

- Decreasing error with increasing optical depth and top height
- Big influence of meteorological clouds (less: land/sea)
- Increase of error for high ash layers

Result:

- Increased errors at deserts (Northern Africa, Arabian peninsula, Southern Africa)
 - → surface emissivity?
- Increase of error with latitude for height retrieval
 - → Lowering of tropopause?

