Validation of POLDER/ GRASP 10 km product and Assessment of multi-angular polarimetry potential

O. Dubovik, C. Chen + Team (Univ. of Lille/CNRS, GRASP-SAS, NASA/GSFC, Cloudflight GmbH)

Details in: Chen, Dubovik, Fuertes, et al., Earth Syst. Sci. Data Discuss, 2020.

The study includes:

- Introduction of POLDER/GRASP 10km products;
- Validation of 9-year POLDER products against AERONET;
- Comparisons of the AOD results with validation results of 3 MODIS products against AERONET;
- Global pixel to pixel comparisons of POLDER and MODIS AOD 10 km products.

Conclusions/Discussions:

- Both over land ocean total AOD from MAP is, at least, of the similar quality as from SVR;
- Properties AE, fine /coarse AOD (ocean), from MAP generally higher quality than from SVR;
- Detailed properties fine /coarse AOD (land),
 SSA, AAOD are available from MAP and generally not from SVR;
- The algorithm for MAP are very complex, and may need **specific tuning for different products**

MAP – Multi Angular Polarimeter ("POLDER")

SVR – Single View Radiometer ("MODIS")

Validation, all AERONET sites (Ocean), 2008

	Ν	R	RMSE	BIAS	BIAS (τ<0.2)	BIAS (0.2≤τ≤0.7)	BIAS (τ>0.7)
DT vs. Models	32 486 105 (130)	0.92 (0.97)	0.05 (0.05)	-0.01 (-0.01)	0.00 (-0.02)	-0.04 (-0.01)	-0.06 (-0.04)
HP vs. Models	65 551 501 (300)	0.94 (0.97)	0.09 (0.10)	0.05 (0.06)	0.05 (0.05)	0.07 (0.06)	0.16 (0.11)
Operational vs. Models	5 988 842 (91)	0.94 (0.99)	0.04 (0.09)	0.01 (0.05)	0.01 (0.04)	0.03 (0.03)	0.10 (0.24)

Validation, all AERONET sites (Land), 2008

1. 0.05~0.07 bias for Optimized and HP

2. ~0.00 bias for Models, R~0.92, GCOS~53%

3. Stricter filter to generate Models products; do not work for the others

AOD differences between products at 0.1 degree

Global AOD between products at 0.1 degree, 2008

Over ocean, DT vs. Models, R~0.92, Diff~-0.01, RMSE=0.05, >32 millions points

Over land, Models vs. **DT** (R=0.85, **RMSE=0.15**), in contrast, Models vs. **DB** (R=0.76, **RMSE=0.18**), vs. **MAIAC** (R=0.77, **RMSE=0.18**)

0.1 degree AOD classified with NDVI, 2008

Validation metrics classified by NDVI

	Products	R	RMSE	GCOS (%)	BIAS	BIAS (τ<0.2)	BIAS (0.2≤τ≤0.7)	BIAS (τ>0.7)
NDVI<0.2	HP (1410)	0.915	0.155	26.0	0.06	0.09	0.05	-0.03
	Models (786)	0.873	0.159	39.8	-0.01	0.01	-0.03	0.01
	DB (1327)	0.845	0.153	44.2	-0.01	0.03	-0.05	-0.16
	MAIAC_0.1 (1853)	0.883	0.139	42.4	-0.03	0.02	-0.09	-0.22
0.2<=NDVI<0.4	HP (1479)	0.928	0.145	39.4	0.05	0.05	0.06	-0.03
	Models (1020)	0.953	0.125	52.7	0.00	0.00	-0.01	0.04
	DT (1847)	0.895	0.145	40.6	0.02	0.03	0.01	-0.05
	DB (2204)	0.888	0.142	46.3	-0.02	0.00	-0.05	-0.09
	MAIAC_0.1 (2049)	0.901	0.133	53.9	-0.04	-0.01	-0.11	-0.18
0.4<=NDVI<0.6	HP (1249)	0.903	0.173	33.2	0.07	0.06	0.07	0.12
	Models (1074)	0.920	0.086	61.5	0.00	0.01	0.00	-0.04
	DT (2702)	0.907	0.112	46.6	0.01	0.01	0.02	-0.01
	DB (2718)	0.866	0.120	50.0	-0.01	0.01	-0.03	-0.20
	MAIAC_0.1 (2193)	0.911	0.093	53.5	-0.04	-0.03	-0.07	-0.19
NDVI>=0.6	HP (194)	0.853	0.160	21.3	0.11	0.10	0.11	0.10
	Models (786)	0.910	0.083	61.9	0.03	0.02	0.07	0.06
	DT (943)	0.910	0.076	55.0	0.01	0.01	0.03	0.17
	DB (907)	0.855	0.076	60.2	0.00	0.01	-0.04	0.07
	MAIAC_0.1 (651)	0.826	0.063	66.2	-0.02	-0.02	-0.06	-0.04

- ✓ All products perform less good over bare soil (NDVI<0.2) than the rest of surface types</p>
 - ✓ DB and MAIAC overestimate (0.03-0.05) for low AOD and underestimate for medium and high AOD may result in differences over Sahara and Taklimakan
- ✓ AOD products show good performance for NDVI (0.2<=NDVI<0.6), GCOS>~45%, R>0.87
 - ✓ HP AOD has a positive bias 0.05-0.07, which is non-negligible
 - ✓ Models AOD: R>0.92, GCOS>92%, BIAS = 0.00
- ✓ Over dense vegetation (NDVI>=0.6), good GCOS for Models and MODIS (>55%), and low RMSE <0.085; However, the BIAS shows different story.
 - ✓ Models and DT show positive bias for all AOD ranges. In total, 0.01 -0.03, and Models is higher than DT.
 - ✓ DB overall bias is 0.00, and positive for small AOD and high AOD, while underestimate for medium AOD
 - ✓ MAIAC shows negative -0.02.
 - ✓ The different signs of bias for products may worsen the discrepancy.

AE Validation, all AERONET sites (Land/Ocean), 2008

Fine AOD Validation, all AERONET sites (Land), 2008

1. Fine AOD over land is only available from multi-angular polarimetry (MAP), e.g. POLDER

2. Fine AOD from more complex retrieval, e.g. GRASP/Optimized and GRASP/HP, show solid quality, R>0.92 and BIAS<0.01 over land.

3. The AOD 0.05~0.07 bias for Optimized and HP are mainly from coarse mode AOD over land.

Aerosol absorption: spectral SSA and AAOD

1. The GRASP/Modesl spectral **AAOD** bias against AERONET are ~zeros, R is low

wls	N	R	RMSE	BIAS
440 nm	8046	0.54	0.04	0.00
670 nm	8046	0.48	0.02	0.01
865 nm	8046	0.44	0.02	0.00
1020 nm	8046	0.41	0.02	0.00

2. The SSA quality against AERONET improves with AOD filter

POLDER-1, -2, -3/ GRASP products are available

1996- 1997, 2003, 2004 – 2013 : **Aerosol** (land and ocean): AOD (λ), fine/coarse AOD(λ); AE, SSA(λ), AAOD(λ), Scale height, size, etc.

Surface: (land and ocean): BRDF (λ), BPDF (λ),

www.grasp-open.com/products, https://www.aeris-data.fr/icare

• Full archive of POLDER-1,-2,-3 /GRASP is available ;

Conclusions from the data analysis:

- Both over land ocean **total AOD** from MAP is, at least, of the similar quality as from SVR;
- Properties AE, fine /coarse AOD (ocean), from MAP generally higher quality than from SVR;
- Detailed properties fine /coarse AOD (land), SSA, AAOD are available from MAP and generally not from SVR;
- The algorithm for MAP are very complex, and may need **specific tuning** for different products

MAP – Multi Angular Polarimeter ("POLDER")

SVR – Single View Radiometer ("MODIS")

AEROCOM/AEROSAT meeting, 12-16 October, 2020