

Laboratoire Inter-universitaire des Systèmes Atmosphériques

"This project/work has received funding from the European Union's Horizon 2020 research and innovation programme through the EUROCHAMP-2020 Infrastructure Activity under grant agreement No 730997".

Contribution of the laboratory experimental simulation activity within EUROCHAMP-2020/ACTRIS to the aerosol retrieval from satellite observations and modeling –

> Update on lab activities, how to define experiments Discussion: requirements for a new OPAC

C. Di Biagio, P. Formenti, J.F. Doussin, M. Cazaunau CNRS/LISA, France

AEROSAT – 16 October 2020

Why to study aerosols in simulation chambers?

To elucidate processes that occur in the atmosphere/interpret field data

To complement remote sensing observations by providing data not easily measurable in the field

Field information

Chamber investigation

Reproduce in the laboratory the atmospheric complexity (BUT IN A CONTROLLED WAY)

Simulating atmospheric aging (multiphasic reactions, aerosol mixing, photochemistry, etc.)

What we can do, what we can measure, what we can get

INPUT

Aerosols (primary/secondary) Gases Water vapor Clouds Irradiance

Measurements aerosols Size distribution

Mass concentration

Composition (bulk & sizedependent)

Morphology

Ext/abs/sca coefficients ex situ (discrete λ)

High resolution (<1 nm) SW/LW extinction in situ

Growth Factor, CCN

CESAM chamber, 4.2 m³ stainless steel

Realistic irradiation

T, p, RH controlled Isolate/mix aerosol species

Reproduce aging processes Test the wide range of atmospherically-relevant conditions

www.cesam.cnrs.fr

Retrieved intensive spectral optical propeties (dry & wet)

Mass ext/abs/sca efficiencies (MEE/MAE/MSE)

Complex refractive index (CRI) Shape dependent inversion combining size/optical data

Single Scattering Albedo (SSA)

Phase function Shape dependent optical calculations

Hygroscopicity

ACTRIS

Ongoing projects in CESAM: mineral dust

Objective: SW and LW CRI/MEE/SSA for dry « pure » dust aerosols from desert sources representative of global extremes in mineralogy. Link to particle mineralogy & size

Funded projects: REDDUST (2015-2016) TNA activities: prof J. King, A. Chaput, Univ Montreal

Ongoing projects in CESAM: mineral dust

Objective: to investigate the ageing of mineral dust by the heterogeneous reactions with organic species (as limonene, glyoxal, methylglyoxal) and the impact on SW/LW optical properties (CRI, MEE/MAE/MSE) and hygroscopicity

adapted from Denjean et al. (2015)

Funded projects: INVOC-DUST (2018-2020), CLIMDO (2020-2024), PI P. Formenti

Ongoing projects in CESAM: volcanic ashes

Objective: SW and LW (CRI/MEE/SSA) for « pure » dry ashes from different Icelandic sources with different mineralogy. Link to particle mineralogy and size

Different mineralogy and iron oxide speciation than mineral dust (*Baldo et al. ACP 2019*)

Investigating SW and LW optical properties for volcanic ashes (*Baldo et al. in preparation*)

TNA activities: prof Z. Shi, C. Baldo, Univ Birmingham, UK

Ongoing projects in CESAM: black and brown carbon

Objective: SW and LW (CRI/MEE/SSA) for « pure » and « aged » primary and secondary BC and BrC aerosols issued from different combustion processes and chemical reactions. Link to particle composition, morphology and size

Use of optical theories adapted for fractal aggregates (e.g., RDG-FA, Rayleigh–Debye–Gans theory for Fractal–Aggregates) in modeling optical signals for retrieving the spectral CRI

Evolution of size distribution for 9-hours aging, SSA(550 nm) unchanged ~ 0.35

Funded project: BACON (2019-2021), B2C (2020-2024), PI C. Di Biagio TNA activities: prof D. De Haan, Univ San Diego, California

How to define laboratory chamber experiments?

Target species: investigate *realistic* samples covering the range of global- and regionalrelevant variability (composition, size) *size possibles in lab experiments (type-dependent) : tenths of nm to tenths of µm*

Target variables: intensive optical properties (ex., CRI)

Transfer to models/inversion algorithms: having as much as possible clear how this can be done (ex. which parameters are traced in models, assumptions,...)

 \rightarrow exchange information (ex. this session)

Get the accuracy required by models / retrieval algorithms

Requirements for a new OPAC

Revise/test the CRI dataset

(retrieved for airborne/suspended aerosol samples or other, dry and ambient RH; regional-variability, fresh-aged aerosols, mixing)

Provide higher spectral resolution data

CRI/MEE/SSA/phase function for non-spherical particles (ex. fractal aggregates)

OPAC (Hess et al., 1998)), OPAC 4.0 (Koepke et al., 2015)

10 aerosol components (lognormal size distribution, CRI (0.25-40 μ m, 61 λ) 8 RH = 0, 50,70, 80, 80, 95, 98, 99%

Component	File name	σ	r _{modN} (μm)	r _{modV} (µm)	r _{min} (µ m)	" _{max} (µm)	_
Insoluble	INSO	2.51	0.471	6.00	0.005	20.0	soil+organic
Water-soluble	WASO	2.24	0.0212	0.15	0.005	20.0	sulfates+nitrates+organic
Soot	SOOT	2.00	0.0118	0.05	0.005	20.0	-
Sea salt (acc. mode)	SSAM	2.03	0.209	0.94	0.005	20.0	
Sea salt (coa. mode)	SSCM	2.03	1.75	7.90	0.005	60.0	
Mineral (nuc. mode)	MINM	1.95	0.07	0.27	0.005	20.0	
Mineral (acc. mode)	MIAM	2.00	0.39	1.60	0.005	20.0	
Mineral (coa. mode)	MICM	2.15	1.90	11.00	0.005	60.0	
Mineral-transported	MITR	2.20	0.50	3.00	0.02	5.0	
Sulfate droplets	SUSO	2.03	0.0695	0.31	0.005	20.0	Antarctic/ stratospheric aerosols

Increasing RH:

- the radius increases and the CRI is recalculated as a mixing of component and water CRI

OPAC (Hess et al., 1998), OPAC 4.0 (Koepke et al., 2015)

13 aerosol types (mixing of components)

free to mix components as preferred to create your own aerosol type

Mie theory (updated to spheroidal calculations in OPAC 4.0 for mineral dust only)

Aerosol types	Components	N _i (cm ⁻³)	<i>М_i</i> (µg m ⁻³)
Continental clean	total water soluble insoluble	2600 2600 0.15	8.8 5.2 3.6
Continental average	total water soluble insoluble soot	15 300 7000 0.4 8300	24.0 14.0 9.5 0.5
Continental polluted	total water soluble insoluble soot	50 000 15 700 0.6 34 300	47.7 31.4 14.2 2.1
Urban	total water soluble insoluble soot	158 000 28 000 1.5 130 000	99.4 56.0 35.6 7.8
Desert	total water soluble mineral (nuc.) mineral (acc.) mineral (coa.)	2300 2000 269.5 30.5 0.142	225.8 4.0 7.5 168.7 45.6

Maritime clean	total water soluble sea salt (acc.) sea salt (coa.)	1520 1500 20 3.2E-3	42.5 3.0 38.6 0.9
Maritime polluted	total water soluble sea salt (acc.) sea salt (coa.) soot	9000 3800 20 3.2E-3 5180	47.4 7.6 38.6 0.9 0.3
Maritime tropical	total water soluble sea salt (acc.) sea salt (coa.)	600 590 10 1.3E–3	20.8 1.2 19.3 0.3
Aretie	total water soluble insoluble sea salt (acc.) soot	6600 1300 0.01 1.9 5300	6.8 2.6 0.2 3.7 0.3
Antarctic	total sulfate sea salt (acc.) mineral (tra.)	43 42.9 0.47E–1 0.53E–2	2.2 2.0 0.1 0.1

OPAC (Hess et al., 1998), OPAC 4.0 (Koepke et al., 2015)

13 aerosol types (mixing of components)

free to mix components as preferred to create your own aerosol type

Mie theory (updated to spheroidal calculations in OPAC 4.0 for mineral dust only)

Aerosol type	σ _e (0.55 μm) (km ⁻¹)	σ_{e}^{\star} (0.55 µm) (m ² g ⁻¹)	τ (0.55 μm)	Vis (km)	ω (0.55 μm)	g (0.55 μ m)	α (0.35–0.5)	α (0.5–0.8)
Continental clean	0.026	2.39	0.064	79	0.972	0.709	1.10	1.42
Continental average	0.075	2.51	0.151	35	0.925	0.703	1.11	1.42
Continental polluted	0.175	2.86	0.327	16	0.892	0.698	1.13	1.45
Urban	0.353	2.87	0.643	8	0.817	0.689	1.14	1.43
Desert	0.145	0.64	0.286	19	0.888	0.729	0.20	0.17
Maritime clean	0.090	1.29	0.096	30	0.997	0.772	0.12	0.08
Maritime polluted	0.115	1.50	0.117	24	0.975	0.756	0.41	0.35
Maritime tropical	0.043	1.26	0.056	55	0.998	0.774	0.07	0.04
Arctic	0.023	2.17	0.063	88	0.887	0.721	0.85	0.89
Antarctic	0.011	3.33	0.072	130	1.000	0.784	0.34	0.73
Mineral transported (2–3.5 km)	0.064	0.37	0.097	_	0.837	0.775	-0.10	-0.13
Free troposphere (2–12 km)	—	—	0.013	—	0.934	—	1.21	1.58
Stratosphere (12–35 km)			0.005		1.000		0.74	1.14

Hess et al., 1998