Model simulated historical (HIST) forcing and trends

Gunnar Myhre

Why important?

Most CMIP6 models have too rapid global mean temperature increase over last decades compared to observations, several models also too cold in last mid-century.

How important contributor are aerosols to the differences between observations and CMIP6?

Any change in the aerosol forcing over the last decades?

Aerosol forcing within RFMIP CMIP6. The black line in the left figure show the pre-industrial to present aerosol forcing for a large set of models. The right figure shows in the grey colour the aerosol forcing constrained by observed temperature and ocean heat uptake.

°CICERO

Any improvements in model diversity?

AeroCom Historical experiment

4

Model and observations trends in good agreement

Top of the atmosphere clear sky aerosol radiative effect (Paulot et al., ACP, 2019)

Large differences in model and observations trends

Surface radiation (dimming & brigthening) (Moseid et al., ACPD, 2020)

Other useful data

Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations - Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations

Larisa Sogacheva¹, Edith Rodriguez¹, Pekka Kolmonen¹, Timo H. Virtanen¹, Giulia Saponaro¹, Gerrit de Leeuw¹,

50[°] N

