Imperial College London

Identifying observational constraints for aerosol-cloud interactions

Edward Gryspeerdt¹, Po-Lun Ma²

¹Space and Atmospheric Physics Group, Imperial College London

²Pacific Northwest National Lab

14th October 2020 Contact: e.gryspeerdt@imperial.ac.uk

Thanks also to Dipu S. (Leipzig) and Johannes Mülmenstädt (PNNL)

Liquid water path (LWP) adjustments

LWP adjustments to aerosol vary significantly between models

► Up to 0.5Wm⁻² cooling

How does aerosol impact LWP?

Liquid water path (LWP) adjustments

LWP adjustments to aerosol vary significantly between models

► Up to 0.5Wm⁻² cooling

How does aerosol impact LWP?

Liquid water path (LWP) adjustments

LWP adjustments to aerosol vary significantly between models

► Up to 0.5Wm⁻² cooling

How does aerosol impact LWP?

Is the observed relationship useful?

Gryspeerdt et al., ACP, 2019; Gryspeerdt et al., ACP, 2020

Variation between models

Variation between models

$$\Delta LWP \stackrel{?}{=} \left. \frac{dLWP}{dN_d} \right|_{PD} \Delta N_d$$
 $\Delta LWP_{actual} \stackrel{?}{=} \Delta LWP_{diag}$

$$\Delta LWP \stackrel{?}{=} \left. \frac{dLWP}{dN_d} \right|_{PD} \Delta N_d$$
 $\Delta LWP_{actual} \stackrel{?}{=} \Delta LWP_{diag}$

$$\Delta LWP \stackrel{?}{=} \left. \frac{dLWP}{dN_d} \right|_{PD} \Delta N_d$$
 $\Delta LWP_{actual} \stackrel{?}{=} \Delta LWP_{diag}$

McCoy et al. (ACP, 2020) suggest two controls:

- Cloud adjustments (what we want)
- ▶ Wet scavenging (△LWP_{diag} an underestimate)

$$\Delta LWP \stackrel{?}{=} \left. \frac{dLWP}{dN_d} \right|_{PD} \Delta N_d$$
 $\Delta LWP_{actual} \stackrel{?}{=} \Delta LWP_{diag}$

McCoy et al. (ACP, 2020) suggest two controls:

- Cloud adjustments (what we want)
- ▶ Wet scavenging (△LWP_{diag} an underestimate)

$$\Delta LWP \stackrel{?}{=} \left. \frac{dLWP}{dN_d} \right|_{PD} \Delta N_d$$
 $\Delta LWP_{actual} \stackrel{?}{=} \Delta LWP_{diag}$

McCoy et al. (ACP, 2020) suggest two controls:

- Cloud adjustments (what we want)
- ▶ Wet scavenging (△LWP_{diag} an underestimate)

Predictability = $r(\Delta LWP_{actual}, \Delta LWP_{diag})$

Is this just the weak-response models?

Stronger adjustment \rightarrow clearer signal \rightarrow better predictability?

- Using an ensemble of runs from E3SM
 - Variety of perturbed cloud processes
- Ice-free gridboxes only (like a satellite)
- Weak correlation between response magnitude and predictability
- Variability driven by precipitation processes
 - Autoconversion, accretion

Is this just the weak-response models?

Stronger adjustment \rightarrow clearer signal \rightarrow better predictability?

Slightly more optimistic picture when using all data

Is this just the weak-response models?

Stronger adjustment \rightarrow clearer signal \rightarrow better predictability?

Slightly more optimistic picture when using all data

▶ Big changes in predictability from non-precip. processes (TKE, sedimentation)

E3SM is already predictable, an "unpredictable" model would be interesting!

► Large variation in the N_d-LWP relationship between models

- ► Large variation in the N_d-LWP relationship between models
- Power as a constraint varies significantly (currently model specific)

- Large variation in the N_d-LWP relationship between models
- Power as a constraint varies significantly (currently model specific)

Natural experiments

- Excellent evidence of aerosol effects
- Can be difficult to generalise

Gryspeerdt, Goren and Smith, ACPD, 2020

- ► Large variation in the N_a-LWP relationship between models
- Power as a constraint varies significantly (currently model specific)

Natural experiments

- Excellent evidence of aerosol effects
- ► Can be difficult to generalise

Gryspeerdt, Goren and Smith, ACPD, 2020

Temporal responses

How does aerosol effect cloud evolution?

- ► Short-term (Matsui, JGR, 2006)
- Longer-term development (Christensen et al PNAS, 2020)

- ► Large variation in the N_a-LWP relationship between models
- Power as a constraint varies significantly (currently model specific)
- Some techniques (e.g. natural experiments) may get around this
 - If we can generalise them...

Future experiment design

- The AeroCom indirect effect experiment is very useful to analyse observational studies
 - Due to foresight in output selection
- Some of these models are older versions now
 - Some more recent model data around (UKESM)
- Doesn't require a large amount of output (2D daily, PD and PI runs)
 - Could be added to forcing calculation simulations
 - Or other experiments?
 - Just replicating the existing AIE experiment might be an easy start