

Impacts of COVID-19 on Aerosol and Radiative Forcing in China

Xiaohong Liu¹, Zheng Lu¹, Weiyi Wang¹, Yong Wang², Linyi Wei², Louisa Emmons³

> ¹Texas A&M University ²Tsinghua University ³NCAR

19th AeroCom / 8th AeroSat Meeting October 12-16, 2020

Model Configuration

> NCAR CESM2.1.0

- 4-mode Modal Aerosol Module (Liu et al. 2016)
- **MOZART** full chemistry
- **Nitrate** aerosol by MOSAIC module to treat gas-particle partitioning
- **SOA** by volatility-basis set (VBS)
- > AMIP runs with observed SSTs
 - 2015.01 ~ 2020.06 (10 ensembles) at 0.9° × 1.25° horizontal resolution
 - **SSP** case: with SSP245 emissions for 2015-2020
 - <u>COVID</u> case: SSP245 emissions in 2020 revised according to emission reduction during COVID period [Forster et al. 2020, V4]

COVID – SSP for Feb-May 2020 over China

BC concentration change at surface

SOA concentration change (column)

Ozone change (surface)

Dust concentration change (surface)

AOD change (550 nm)

RF_{aci}: Radiative forcing due to ACI

Low CF

RF_{ari}: Radiative forcing due to ARI

Surface temperature

Precipitation change (large-scale clouds)

Conclusions

- A comprehensive chemistry-climate model CESM2 is used to simulate the effects of COVID emission reductions on aerosol, radiative flux, and climate in China in February to May 2020.
- Model simulates a reduction of primary aerosols (e.g., BC) as a result of emission reductions. However, simulated secondary aerosols (SOA, nitrate) are increased in central China in spring due to increased oxidation capacity (e.g., O₃).
- Strong positive RF_{aci} (warming) across China in February due to reduced low clouds. Negative RF_{aci} (cooling) in central China in spring due to increased secondary aerosols.
- Strong negative RF_{ari} (cooling) across China in February due to reduced BC and low clouds.
- Surface temperature (1-2^o) increased, and precipitation decreased in February and March due to reduced clouds.

Reduction of aerosol & precursor emissions in China

POM (surface)

Δ Surface POM concentration

SO₂ (surface)

Sulfate aerosol (surface)

 Δ Surface Sulfate concentration

Nitrate aerosol (surface)

Ammonium (surface)

SOA (surface)

Sulfate aerosol (column)

 Δ Sulfate column concentration

Nitrate aerosol (column)

 Δ NO3 column concentration

RF_{ari} (clear-sky)

RF_{ari} (all-sky), February

SSP

COVID

LWP

CDNC

Nitrate aerosol in CAM6

- In order to treat NO3 aerosol, Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) module [Zaveri et al., 2008] is coupled with MAM4 of CESM2[Lu, Liu, et al., under review].
- In the version of MAM coupled with MOSAIC, gas-aerosol exchange is treated by MOSAIC. The remaining processes are still treated by MAM

Source: presentation by Zaveri WRF tutorial, 2008

Nitrate aerosol in CAM6

No.	Species	Accum.	Aitken	coarse	Primary Carbon	
1.	BC	Х			Х	
2.	POM	Х			Х	
3.	SOA X 5	Х	Х			Gas Phase
4.	SO4	Х	Х	Х		HNO ₃ HCl NH ₃ Organic H ₂ SO ₄ HCl NH ₃ Organic OH- H ⁺ NH ₄ ⁺ Cl ⁻ NO ₃ Solid Ca ²⁺ Particle Phase SO ₄ OC, BC Org ⁻ H ₂ O OC, BC Org ⁻ CO ₃ ²⁻ Aqueous Phase
5.	NH4	Х	Х	Х		
6.	NO3	Х	Х	Х		
7.	Cl	Х	Х	Х		
8.	Na	Х	Х	Х		
9.	Dust	Х		Х		
10.	Са	Х		Х		
11.	CO3	Х		Х		
Total		15	10	8	2	Source: presentation by Zaveri

WRF tutorial, 2008