

Identifying the model properties contributing to aerosol forcing uncertainty

AEROCOM Meeting 2020

10/05/2020 Harri Kokkola

Aerosol forcing

MODEL BASED UNCERTAINTY ≈ MULTI-MODEL "DIVERSITY"

- Which model properties contribute to this variability?
- Developed an offline Python tool where model output can be used interchangeably
- Instead of studying model sensitivity, we study "forcing sensitivity" to different parameters
- Offline Python tool for
 - calculating aerosol radiative properties
 - calculating cloud droplet number concentration

2

Aerosol properties

Aerosol properties:

rh(lon, lat, lev, time, model)

How much inter-model variability in AOD is due to inter-model variability in RH?

RELATIVE HUMIDITY

rh(lon, lat, lev, time, model)

model = [CAM5-ATRAS, GEOS-i33p2, GFDL-AM4, GISS-ModelE2p1p1-OMA, INCA, MIROC-SPRINTARS, ECHAM6.3-SALSA2.0, ECHAM6.3-HAM2.3]

AOD

Difference between the maximum and minimum AOD

METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Aerosol properties:

rh(lon, lat, lev, time)

CDNC burden

CDNCb(lon, lat, time, model)

How much inter-model variability in CDNC is due to inter-model variability in number concentration?

CDNC burden

Data Min = 8E+09, Max = 2E+12, Mean = 4E+11

Difference between the maximum and minimum CDNCb

OMA, ECHAM6.3-SALSA2.0, ECHAM6.3-HAM2.3]

model = [CAM5-ATRAS, GFDL-AM4, GISS-ModelE2p1p1-

Models of lowest and highest values

Intercomparison

- Repeat the procedure for all relevant model properties
- Obtain a distribution of aerosol extinction and CDNC

- Data:

- CRESCENDO (EU project, ESM-data)
- Trajectory experiment GCMTraj
 - high time resolution
 - size resolved

item	details	<u>RFari</u>	<u>RFaci</u>
Simulated properties			
number size distribution	Global 3D values for each size class	х	x
composition size	Global 3D values for each size class,	х	х
distribution	each chemical compound		
relative humidity	Global 3D values of the cloud-free part of	х	
	the grid box		
updraft velocity	Global 3D values for the mean of positive		х
	updraft velocities		
cloud fraction	Global 3D values of the cloud fraction	х	х
	within each grid box		
Model parameters	MARCH AND		
refractive index	Values for aerosol species used in each	х	
	global climate model		
hygroscopicity	Values for aerosol species used in each	х	х
	global climate model		
surface albedo	Global 2D values of surface albedo	х	х
Model parametrization			
Treatment of model	Parameterizations used in each global	х	
hygroscopicity	climate model		
cloud activation	Parameterizations used in each global		х
parameterization (liquid)	climate model		
Cloud activation	Parameterizations used in each global		х
parameterization (mixed)	climate model		