Natural Laboratories for Aerosol Cloud Interactions

Andrew Gettelman (NCAR), Matthew Christensen (Oxford)

Micael Cecchini, Jan Cermak, Guy Dagan1, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Jennifer Griswold, Daniel Grosvenor, Ed Gryspeerdt, Jim Haywood, Ralph Kahn, Zhanquing Li, Luiz Machado, Florent Malavelle, Greg McFarquhar, Johannes Mulmenstadt, Sandip Pal, Anna Possner, Adam Povey1, Johannes Quaas, Danny Rosenfeld, Anja Schmidt, Roland Schrodner, Armin Sorooshian, Odran Sourdeval, Philip Stier, Velle Toll, Minghuai Wang, Duncan Watson-Parris, Robert Wood, Masaru Yoshioka, Tianle Yuan

September 25th 2016 South Sandwich Islands (NASA Worldview)

What is a 'Natural Laboratory'? AKA: 'Opportunistic Experiment'

Anomalous Cloud Lines¹

JOHN H. CONOVER

Air Force Cambridge Research Laboratories, Bedford, Mass. (Manuscript received 22 March 1966, in revised form 29 July 1966)

3. Interpretation

Possible causes of the anomalous lines involve a) aircraft condensation trails, b) missile trails, c) smoke screens from ships, d) convection induced by certain temperature patterns in the sea, and e) the effluents from ships. The last appears to be the most reasonable,

- Cloud lines distort in relation to the large scale cloud which is at low-levels.
- b) Due to their speed, one end of the missile trail should not appear significantly different from the other end.
- c) Smoke screens of this size cannot be generated, nor would they be in locations where these lines are found.
- d) Sharp discontinuities in SST are not prevalent except on the edges of major ocean currents. Furthermore, cloud lines formed over a line of warm water would not be expected to show a difference in age from one end to the other.

One of the first satellite images of a ship track

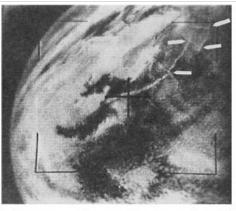
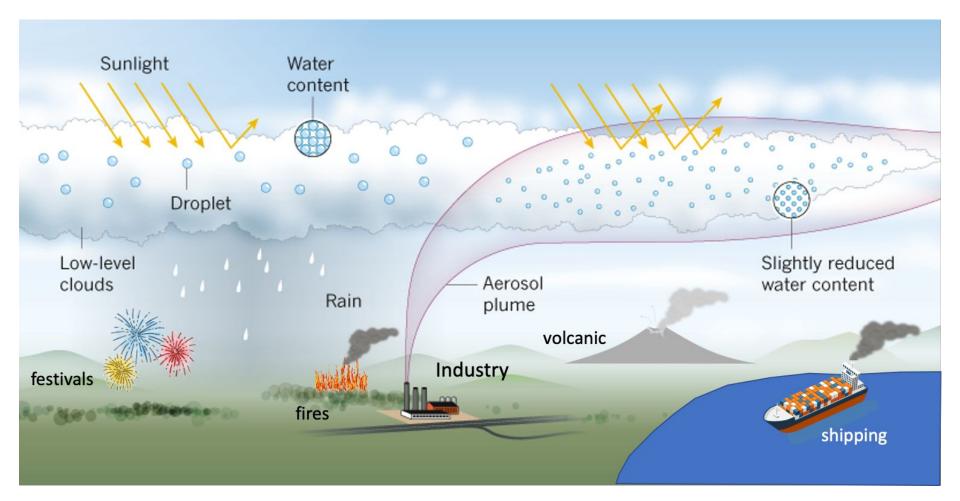



FIG. 5. Crossing curved anomalous lines. Arrows point to the most prominent crossings. Case 7.

TIROS VII: Television Infrared Observational Satellite camera First successful weather satellites

Different types of Natural Laboratories (or 'opportunistic experiments')

- Ship emissions (42 papers; satellite=28, LES=4, in situ =6)
- Industrial sources (14 papers)
- Volcanoes (11 papers)
 - Kilauea (Hawai'i), Ambrym (Vanuatu), Holuhraun 2014-2015 (Iceland)
- Fires (7 papers)
- Hemispheric differences (2 papers)
- Long Term Trends (4 papers)
- Weekly cycle (2 papers)
- Particular events
 - Beijing Olympics, Great Recession,
 - COVID-19 [several papers in process]

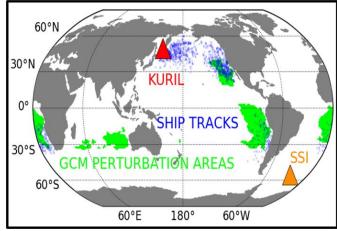
ACPC Natural Laboratories Review

April 2020: ACPC low cloud project decided that there was a lot to be learned from synthesizing work on natural laboratories for aerosol cloud interactions.

A project to develop a review paper was initiated

Aerosol, Cloud, Precipitation & Climate (ACPC) Working Group

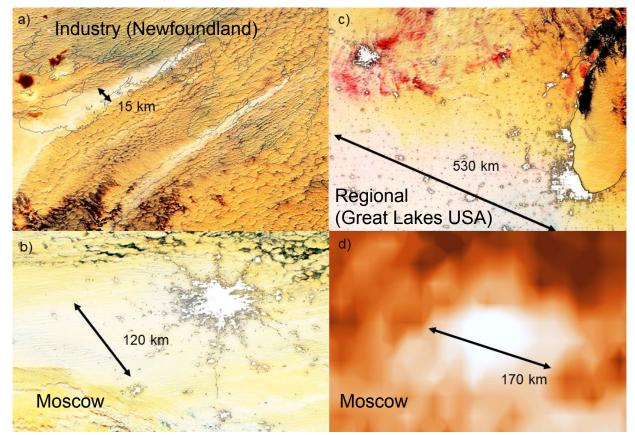
ACPC is a joint initiative of the International Geosphere–Biosphere Programme (IGBP) and the World Climate Research Programme (WCRP), developed through the cooperation of the IGBP's Integrated Land Ecosystem–Atmosphere Processes Study (iLEAPS) and International Global Atmospheric Chemistry (IGAC) and WCRP's Global Energy and Water Cycle Experiment (GEWEX).


Natural Laboratories Review: Scope/Vision

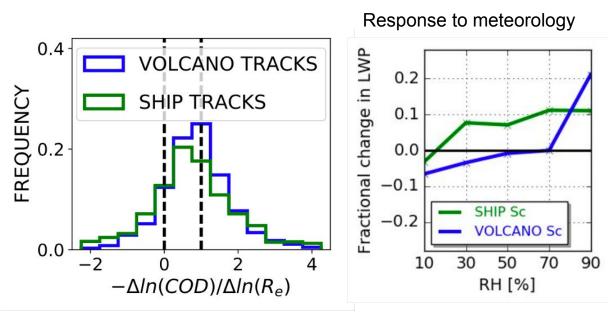
Bring together in a common framework different 'natural laboratories' of anthropogenic aerosol impacts on clouds, especially the microphysical effect of aerosols on clouds

1. A review/summary paper on different laboratories and what we have learned from them using models and observations. Include a synthesis and next steps.

 A Table and Database of different natural laboratories where, when, data sources, where studied. Links to associated emissions and observations datasets



Cloud 'Tracks' Across Scales

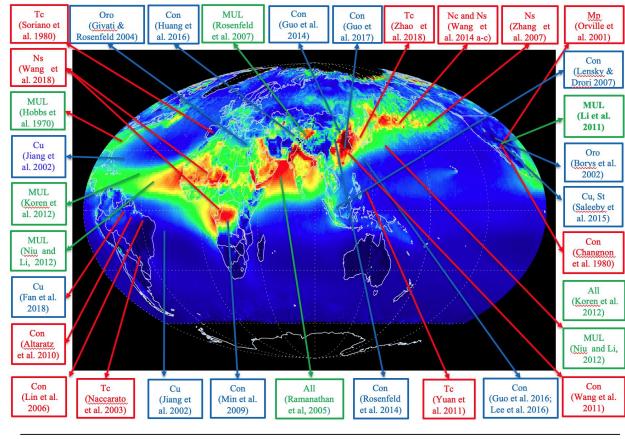

A-C: MODIS daytime near-infrared composite satellite images (sensitive to Re)

D: AVHRR Re

Velle Toll

Ship and Volcano Track Responses

 Cloud albedo effect ratio similar in both ship and volcano tracks. (Ship tracks: effective Radius ΔRe = -22%; and Cloud Optical Depth ΔCOD ≈ +36%).


Liquid water path (LWP)
 increases as *free-troposphere humidity* increases similarly
 for both ship and volcano
 tracks.

Toll et al. (2017)

Precipitation Sensitivity

Precip Sensitivity to Aerosols, depends on Regime

Lee et al 2019, JGR

Cloud	All cloud types	Thundercloud	Mixed-phase cloud	Orographic cloud	Cumulus	Nimbostratus	Stratus	Convective clouds
Acronym	All	Tc	Mp	Oro	Cu	Ns	St	Con

Review Timeline/Progress

- Developed outline with co-authors
- Data collection: Preliminary database
- Now: analysis/synthesis, working on draft
- Goal: Submit and Report by April 2021 ACPC meeting

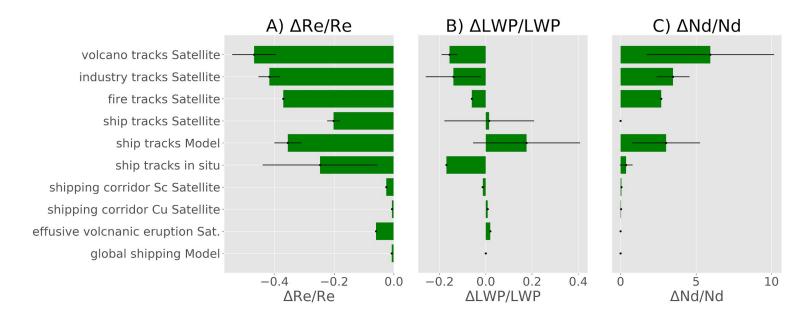
Want to help? Let us know.

Still happy to engage others and add co-authors. Unpublished modeling estimates based on existing models are probably fine (e.g.: Shipping emissions effects).

Database

Data collection with type, location, regime, highlights

Quantitative estimates:

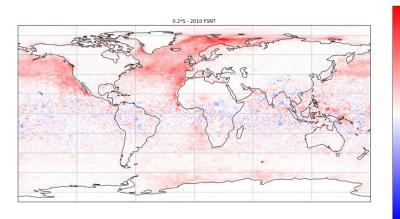

• E	ERF	(W/m2)
-----	-----	--------

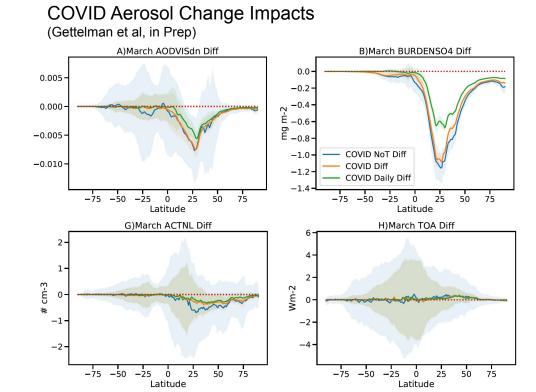
- Freq
- CldFrc
- Δ τ/ τ
- ΔA/ A
- ΔNd/Nd
- ΔRe/Re
- ALWP/LWP
- ΔHeight/Height

	AuthoriYear	Laboratory	Location	Methods	Regime/Type	Scale	Highlight/Conclusions	ERF (Wim	12) Freq	CldFrc ∆	dr 4	AA/A ANd	ARe/Re	ALWP/LV Z	Height/Heig Full reference
4	Baietal., 2020	iono-term trend	alahal soona i	Cotalita			large drop in cloud droplet nubmer concentrations in response to arrend residuction, but not cloud fraction.								Best, H., Wang, M., Zhong, Z., & Liu, Y. (2000). Spreading standing for the off properties over croasm and to implication for seriod-chood methods. The seriod-chood Research: Atmospheres, '25, exist (Lag Order), respinsion and (Lag Order), respinsion and (Lag Order), and (Lag Order), and (Lag Order), respinsion and (Lag Order), and (Lag Order), and (Lag Order), respinsion and (Lag Order), and (Lag Order), and (Lag Order), and (Lag Order), respinsion and (Lag Order), and (Lag Order), and (Lag Order), and (Lag Order), and (Lag Or
			groun occurs,				ship tracks in roll clouds (orientation between rolls and plume								
<u> </u>	Berner et al. (2015)	ship tracks		Model	LES		constrain track width)								Berner, A. H., Bretherton, C. S., and Wood, R.: Large eddy simulation of ship tracks in the collapsed marine boundary layer: a case study from the Monte
6		ship tracks		Satellite			further evidence of "anomalous cloud lines" following first sighting by Conover (1966) and link to stable synoptics								Bowley, C. J., 1967: Comments on Atmospheric Requirements for the Genesis of Anomalous Cloud Lines. J. Atmos. Sci., 24, 596–597; https://doi.org/10.
7	Campmany et al (2009)	ship tracks	Globe	Satellite			small frequency of occurrence		0.0002						
					Aerosol only (should this		Small effect detected with neural pet that accounts for met, but								
			China Midicle basics	Satellite	count?)		meteorology swamps effect size								Cermak, J., & Knutti, R. (2009). Beijing Olympics as an aerosol field experiment. Geophysical Research Letters, 38(10), L10806.
			Multiple basins Multiple basins				cloud dimming in 30% of ship tracks MISR enhanced cloud top divergence in ship tracks								
							Trends in AOD and Nd largely consistent, not for L and f; Constraints on CMIPS and CMIP6								
10		trend trend	North America,	Satellite Surface radiatio			Constraints on CMIP5 and CMIP6 Emergent constraint for CMIP5 models	-1.3 Wm-2							Cherian, R., and J. Quaas, Trends in AOD, clouds and cloud radiative effects in satelite data and CMIP5 and CMIP6 model simulations over aerosol sour Cherian, R., J. Quaas, M. Salzmann, and M. Wild, Pollution trends over Europe constrain global aerosol forcing as simulated by climate models. Geophys
13	Christensen and Stephens (2012)		Europe Multiple basins		5n		drizzle suppression in ship tracks in closed cell clouds	-1.3 Wm-2							Chenan, R., J. Quaas, M. Saizmann, and M. Wild, Poliution trends over curope constrain global aerosol forcing as simulated by climate models, Geophys
	Christensen and Stephens 2011		East Pacific	Satellite			Ship tracks in open cells large reponses		12		0.13		-0.18		0.006 Christensen, M. W., and G. L. Stephens (2011), Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deep
		ship tracks	East Pacific East Pacific	Satellite Satellite			Ship tracks in closed cells weak responses		59		0.83		-0.21	0.39	0.15 Christensen, M. W., and G. L. Stephens (2011), Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Eviden
		ship tracks ship tracks	East Pacific Multiple basins	Satellite			TERRA and AQUA differences of same tracks warm vs mixed phase cloud comparisons								
							first study to demonstrate LWP decreases (although Ackerman et								
	Coakley and Walsh (2002)	ship tracks	East Pacific	Satellite			al. 1999 inferred weak LWC decreases from MAST) ship tracks are rare and predominantly occur in low-lyel coupled				0.08		-0.24	-0.175	J. A. Coakley Jr., C. D. Walsh: Limits to aerosol indirect radiative effect derived from observations of ship tracks, J. Atmos. Sci.
		ship tracks		Satellite			step tracks are rare and predominantly occur in low-livel coupled clouds								Coakley, J. A., and Coauthors, 2000: The Appearance and Disappearance of Ship Tracks on Large Spatial Scales. J. Atmos. Sci., 57, 2765-2778, https://
20	Conover (1966)	ship tracks		Satellite											Conover, J. H., 1966: Anomalous Cloud Lines. J. Atmos. Sci., 23, 778–785. https://doi.org/10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2.
21	Diamond et al. (2020)	shipping corridor	South East Atla	Satellite	Sc	Morning climatology	Strong cloud brightening from Twomey effect	-6.5	56	0.8809	0.0213	0.0163 0.072	4 -0.0261	-0.0057	Diamond, M. S., Director, H. M., Eastman, R., Possner, A., & Wood, R. (2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds.
						Afternoon									
	Diamond et al. (2020)	shipping corridor	South East Atla	Satellite	Sc	climatology Doiby	Offsetting Twomey and negative LWP effects Cloud brightening from Twomey effect partially offset by LWP	-2	2.4	0.913	0.0058	0.0072 0.052	2 -0.0252	-0.02	Diamond, M. S., Director, H. M., Eastman, R., Possner, A., & Wood, R. (2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds.
23	Diamond et al. (2020)	shipping corridor	South East Atla	r Satellite	Sc	Daily climatology	Cloud brightening from Twomey effect partially offset by LWP decrease, no clear cloud fraction change	-2.2	24	0.9258	0.0136	0.0129 0.06	-0.0256	-0.0129	Diamond, M. S., Director, H. M., Eastman, R., Possner, A., & Wood, R. (2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds.
24	Diamond et al. (2020)	shipping corridor	Caudh C 4-	Cataller	Cu	Morning	No statistically significant changes			0.7454	0.0400	0.0154 0.036		0.0110	Dismond, M. S., Director, H. M., Esstman, R., Possner, A., & Wood, R. (2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds.
~					100	climatology Afternoon									
25	Diamond et al. (2020)	shipping corridor	South East Atla	Satellite	Cu	climatology	Significantly significant cloud droplet increase but nothing else			0.7402	0.0066	0.0043 0.021	5 -0.0057	0.0023	Diamond, M. S., Director, H. M., Eastman, R., Possner, A., & Wood, R. (2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds.
26	Diamond et al. (2020)	shipping corridor	South East Atla	Satellite	Cu	Daily climatology	Overall effects much more highly uncertain than for Sc region	-0.8	83	0 7317	0.012	0.0079 0.025	2 .0 0065	0.0086	Diamond, M. S., Director, H. M., Eastman, R., Possner, A., & Wood, R. (2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds.
27	Diamond & Wood (2020)	COVID	China	Satellite	Stratus/Sc	Regional	No detected aerosol/cloud effect despite huge NO2 drop	-0.6	-		2.913			2.0000	Diamond, M. S., & Wood, R. (2020). Limited Regional Aerosol and Cloud Microphysical Changes Despite Unprecedented Decline in Nitrogen Oxide Pol
28	Durkee et al. (2000)	ship tracks	East Pacific	satellite/soundin	ng (MAST)		MAST campaign statistics, ship tracks are ~7.3h old, 296km long					0.11			0.15 Durkee, P. A., and Coauthors, 2000: Composite Ship Track Characteristics. J. Atmos. Sci., 57, 2542-2553, https://doi.org/10.1175/1520-0469(2000)057-
19	Ebmeier et al. 2014	volcano tracks	Kilauea	Satellite			Enhancement of effective radius but not LWP downwind; includes control	10-45			0.23		-0.5		Ebmeler, S. K., Saver, A. M., Grainger, R. G., Mather, T. A., and Carboni, E. (2014). Systematic satelite observations of the impact of aerosols from pass
							Review of ship emissions and radiative forcing, Section on								
		shipping corridor	Global	Various		2 tracks	clouds CCN increase is responsible for track and associated with Reff								Eyring et al 2007, Atmos Environment, <u>https://doi.org/10.1016/j.atmosenv.2009.04.059</u> Ferek, R. J., Hegg, D. A., Hobbs, P. V., Durkee, P., and Nielsen, K. (1998), Measurements of ship-induced tracks in clouds off the Washington coast, J.
31	Ferek et al. (1998)	ship tracks	East Pacific	in situ		2 tracks sampled	reduction by ~50%						-0.5		r www.r.w.megg.w.m.r.weed, r. v. Lander, r., and messer, n. (1999), measurements or any mauced sacks in clouds of the Washington coast, J.
		ship tracks	East Pacific	in situ			drizzle reduction within ship tracks by 61% on average during MAST								Fereix, R. J., and Coauthors. 2000: Drizzle Suppression in Ship Tracks, J. Almos. Sci., 57, 2707–2728. https://doi.org/10.1175/1520-0469/2000/057<2707
							liquid water content can decrease increase or remain								
			South Sandwich				unchanged with respect to nearby unperturbed clouds								Gassó, S. (2008). Satellite observations of the impact of weak volcanic activity on marine clouds. Journal of Geophysical Research: Atmospheres, 113(D
	Gettelman, Schmidt, & Kristjansso	volcano tracks	Europe	GCM			long-lived ship tracks have substantial effect on cloud fraction of								Gettelman, A., Schmidt, A. & Egill Kristjánsson, J. Icelandic volcanic emissions and climate. Nature Geosci 8, 243 (2015). https://doi.org/10.1038/ngeo23
		ship tracks		Satellite			regional scales								
	Gryspeerdt et al. (2019)	ship tracks	East Pacific	Satellite			SECA zone and meteorological impacts on ship track occurrence Weak Nd-LWP relationship in plume, shptrack relation depends								
		volcano, shiptrack					on background state								
18	Guo et al.,	industrial emission	China	surface observa			Impact of increasing anthropogenic emissions on light rain trend								Gas, J. T. Su, Z. Li, T. Man, J. Li, H. Liu, H. Xu, M. Cellb, P. Zhui, 2017, Decibiling frequency of numerative local-scale procipitation over sustern China from 1979–2018 and its potential link to acrossly, Geo
9					average from diesel-powere										Peter V. Hobbs; Timothy J. Garrett; Ronald J. Ferek; Scott R. Strader; Dean A. Hegg; Glendon M. Frick; William A. Hoppel; Richard F. Gasparovic; Lynn
	Hobbs et al. (2000)	ship tracks	East Pacific	in situ	d ships		ship exhaust impacts cloud properties					0.93	-0.35		
0	Hobbs et al. (2000)	shin tracks	Fast Pacific	in shi	distillate fuel		ship exhaust impacts cloud properties					0.04	.0.04		Peter V. Hobbs;Timothy J. Garrett; Ronald J. Ferek;Scott R. Strader; Dean A. Hegg; Glendon M. Frick; William A. Hoppel; Richard F. Gasparovic; Lynn
		coal power plant			stratus		Large Nd effect in stratus, little effect in cumulus					0.04			Hobbs, P. V., Stith, J. L., & Racke, L. F. (1980). Cloud-Active Nuclei from Coal-Fired Electric Power Plants and Their Interactions with Clouds. Journal of
		fire tracks	Canada				Impact of smoke on pyra-Cb in boreal forest region of Canada								Kablick, P., et al., 2018, The Great Slave Lake pyroCb of 5 August 2014: Observations, simulations, comparisons with regula convection, a
3	Jung et al. (2015)	sea salt (is this a r	NE Dacific	in situ	stratus		Impacts of giant salt particle seeding after release by a Twin Other at toos of the cloud deck								Jung, E., Albrecht, B.A., Jonsson, H.H., Chen, Y.C., Seinfeld, J.H., Sorooshian, A., Metcalf, A.R., Song, S., Fang, M., Russell, L.M., 2015.
4		sea salt (is this a r global shipping		in situ Model	stratus low cloud	global	over a wya of the cloud deck						-0.00732		Jung, E., Alorceni, B.A., Jonsson, H.H., Chen, T.C., Seinreid, J.H., Soroosman, A., Metcali, A.K., Song, S., Fang, M., Russell, L.M., 2015. Lauer, A., Eyring, V., Hendricks, J., Jöckel, P., and Lohmann, U.: Global model simulations of the impact of ocean-going ships on aerosols, clouds,
							A comprehensive review of studies on the impact of Asian								and the second of the second of the second of the second sec
15	Lietal., 2016	long-term trend	Asia	satellite and orc	ound observation		aerosols on the long-term trends of various meteorological variables at varying time scales especially decadal trends								Li, Z., et al., 2016: Aerosol and monsoon interactions in Asia, Rev. Geophys., 10.1002/2015 RG000500.
		-		-			Survey and review on the impact of different types of aerosols on								
	Li et al., 2019	industrial emission	China	all types of obse	ervations		cloud and precipitation in China and around the world								Li, Z., et al., 2019, East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIR Ly, Z., Liu, X., Zhao, Z., Zhao, C., Mever, K., Raispaishte, C., Wu, C.,
17															Lu Z, L Lu X, Zhang Z, Zhao C, Mayez K, Rajapakiha C, Wu C, (2018) Tomosa smole horm control more factor and protecting vehiclos the trightness of antiacurulus over the southwattern idlatic coses. Proceedings of the National Academy of Southens. 15(512), 292–292.
	Lu et al 2008	biomass burning	South East Atla	Satellite Obs / n	models		Diurnal cycle in cloud adjustment response for Sc								of the National Academy of Sciences, 115(12), 2924–2929.
		volcano tracks effusive volcnanic		Satellite			Deeper clouds in Kilauea Plume Nd response, no LWP response in MODIS							0.02	Mace, G. G., and A. C. Abernathy. "Observational Evidence for Aerosol Invigoration in Shallow Cumulus Downstream of Mount Kilauea." Geophysical R Malavele, Florent F., Jim M. Harwood, Andy Jones, Andrew Gettelman, Lieven Clarisse, Sophie Bauduin, Richard P. Alan, et al. "Strong Constraints or
	maraverile et al 2017	enusive voicnanic	nounraun	oaleiite			we response, no LWP response in MODIS						-0.06	0.02	Malavele, Florent F., Jim M. Haywood, Andy Jones, Andrew Gettelman, Lieven Clarisse, Sophie Bauduin, Richard P. Allan, et al. "Strong Constraints on Mardi, A.H., Dadashazar, H., MacDonald, A.B., Crosbie, E., Coggon, M.M., Aghdam, M.A., Woods, R.K., Jonsson, H.H., Flagan, R.C., Se
2							Lower CCN activation potential during wildfire periods; different chemical profile in clouds during wildfire periods; dust is								Mardi, A.H., Dadsubazer, H., MacDonald, A.B., Braun, R.A., Crosbei, E., Xian, P., Thorsen, T.J., Coggon, M.M., Ferm, M.A., Ferrare, R.A., Hair, W., Woods, R.K., Jacoson, H.H., Fagan, R.C., Scinfeld, J.H., Sorooshian, A., 2018. Biomass Barming Plannes in the Vicinity of the california Coastr. Advence Characterization of Physicochemical Proprinter, Heating Rates,
	Mardi et al. 2018, 2019	biomass burning	Northeast Pacif	in situ			entrained in wildfire plumes and evident in cloud water no discernable radiative effect of ship tracks in polluted boundary								and Spatiotemporal Features. J Geophys Res-Atmos 123, 13560-13582.
	Noone et al. (2000)	ship tracks		in situ			no oscernacie radiative effect of snip tracks in polluted boundary layers					0.0	-0.006		Noone, K. J., and Coauthors, 2000: A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer. J. Atmos. Sci., 57, 2748-2764, https://
		shipping corridor	several?	Satellite											
				Model			fully parameterised model capable of reproducing realistic ship						1.00		
2					regional model		tracks						-0.4		Possner, A., Zubler, E., Lohmann, U., and Schär, C.: Real-case simulations of aerosol-cloud interactions in ship tracks over the Bay of Biscay, Atmos.
2		ship tracks	Europe	Model	regional model		emission dilution contributed 47% to bias in SW CDF while								Possner & F. M. Zuhler II. Johnson, and C. Schär (2016). The resolution dependence of cloud effects and ship induced access induced interactions in
2	Possner et al 2017	ship tracks	Europe	Model			emission dilution contributed 47% to bias in SW CRE, while increased ice water content in ship-perturbed mixed-phase								Possner A., E. M. Zubler, U. Lohmann, and C. Schär (2016), The resolution dependence of cloud effects and ship-induced aerosol-cloud interactions in
	Possner et al 2017 Possner et al 2017	ship tracks			LES		increased ice water content in ship-perturbed mixed-phase clouds					2.1	-0.31	0.06	Possner, A., A. M. L. Ekman, and U. Lohmann (2017), Cloud response and feedback processes in stratiform mixed-phase clouds perturbed by ship exit
	Possner et al 2017 Possner et al 2017 Quaas (2015)	ship tracks	Europe	Model	LES							2.1	-0.31	0.06	

Preliminary Meta Analysis

Preliminary analysis of 50 studies, maybe 15 studies with quantitative values


Still adding studies. Interesting commonalities (e.g., volcanoes more than shipping corridors) Looking at systematic differences by regime, emission type, method


Unpublished and Emerging Analyses

We can probably add estimates even if they are not quite published

Examples with CAM6:

2020 Shipping Emissions Regulations ERF for 80% Shipping Sulfur Reduction (+0.14 Wm⁻²)

Summary

- Natural Laboratories are experiments of opportunity that show clear sensitivity of cloud properties to aerosols
- Types: industrial emissions, volcanoes, ship tracks, regional emissions.
 - Even global perturbations: COVID emissions changes or long term trends
- Perhaps 50 or more studies looking at these events, but no meta-analysis
- Initial collection and synthesis of different studies indicates some interesting differences and commonalities.
- Quantitative information is available and this may be very useful to help understand and quantify ACI
- Join us! Happy to include emerging modeling work