Impact of Amazon fire on plant productivity

Huisheng Bian^{1,2}, Eunjee Lee^{3,2}, Sarith Mahanama^{3,2}, Randal Koster², Fanwei Zeng^{3,2}, Donifan Barahona², Anton Darmenov², Michael Manyin³,², Peter Norris^{3,2}, Mian Chin², Peter Colarco², Hongbin Yu², Lesley Ott², Joanna Joiner², and Yasuko. Yoshida^{3,2}

¹UMBC/JCET, ²NASA/GSFC, ³SSAI

Why do we care?

Amazon forest thrive during dry season

Radiation, Leaf Area Index, and Rainfall over Amazon during 2000-2005 (Myneni et al. 2007)

Amazon experience fires during dry season (Aug-Oct) every year Amazon GFED4s (CMIP6) 2.154 (Tg) Amazon 4 FEERv1.0-G1.2 4.502 (Tp (25S-5N, 85W-30W) 6.404 (Tg) QFED2.5r1 з OC (Tg) 2 1 2005 20 0 1995 2000 2015 Year

Objective 1

How biomass burning aerosols impact Amazon productivity via radiation only

The **allaer** and **nobbaer** : The only difference in their GPP simulations is the different radiation fields in GEOScatchCN with and without impact of BB aerosols.

"replay" mode : We run GEOS in replay mode. Every 6h, the model dynamical state (winds, pressure, temperature, and humidity) is set to the balanced state provided by MERRA2 meteorological analyses.

Objective 1

How Amazon PAR and GPP change due to the impact of biomass burning aerosol on radiation

201008	nobbaer	allaer	Rel-diff
	W/m2	W/m2	%
DRPAR	78	66	-15.7
DFPAR	32	35	10.3
	GtC	GtC	%
GPP	1.9	2.1	9.9

Amazon: land over 25S-5N, 80W-30W Red-diff (%) = (allaer – nobbaer) / nobbaer

Objective 1 What is the NPP response?

Amazon (25S-5N, 85W-30W) during 2010-2016:

- NPP is increased by 1.5%/yr with the impact of BBaer-radiation-plants
- Average NPP is enhanced by ~92 TgC/yr
- Regional fire emitted ~250 TgC/yr

=>1.5% of NPP enhancement equivalent to ~37% of C loss by fires

Summary

- The impact of BBaer on radiation fields that drive GEOSCatchCN could increase Amazon GPP up to 10%, via increasing DFPAR by 10% and decreasing DRPAR by 16%, on a monthly basis during 2010-2016
- 2. Consequently, Amazon NPP is increased by 1.5%/yr, which is ~92TgC/yr. This NPP enhancement is equivalent to ~37% of C loss due to Amazon fires. Of course, this compensation occurs only once, while the loss of plants, particularly forest, could persist for decades.
- 3. The effectiveness of the aerosol light fertilizer is strongly dependent on the presence of cloud: much stronger (as much as 5 times higher) in clear sky conditions than in full cloudy conditions.

Backup

Sanity check for GEOS performance

- Photosynthesis and transpiration depend non-linearly on solar radiation, via the light response of stomata
- The canopy is treated as two leaves (sunlit and shaded) in CLM4
- The DRPAR and DFPAR absorbed by the vegetation is apportioned to the sunlit and shaded leaves as described by Thornton and Zimmermann (2007).

Objective 2

How sensitive is the impact of BBaer-radiation-plants on environment clouds?

Two experiments	callaer	cnobbaer
Atmos dynamic fields	Same BBaer over 2010-2016	Same BBaer over 2010-2016
rad fields into land	Same BBaer over 2010-2016	No BBaer

We will analyze the cloud, GPP and PAR-to-GEOScatchCN of **callaer** and **cnobbaer** for 7 Aug-Sept seasons. We will investigate how interannual cloud variation adjusts the impact of BBaer-radiation-plants.

Objective 2 Cloud vs aerosol effect

Every Aug-Sept over 2010-2016 Amazon (80W-30W, 25S-5N)

Objective 2: Cloud vs aerosol effect

At a selected site (54°W, 15°S) during Aug-Oct 2010

Objective 2: Cloud vs aerosol effect

At a selected site (54°W, 15°S) during Aug-Oct 2010

How fires impact plants

How fires impact plants: future study

