Development of Aerosol Data Assimilation System at NOAA

Mariusz Pagowski^{1,2}, Bo Huang^{1,2}, Cory R. Martin³, Dan Holdaway⁴, Daryl T. Kleist⁵, Shobha Kondragunta⁶ *Collaborators:* Arlindo da Silva⁷, Benjamin Johnson⁴, Georg A. Grell², Sarah Lu⁸, Shih-Wei Wei⁸, Li Zhang^{1,2}, Judy Henderson², Xiaoyang Zhang⁹

¹CIRES, CU Boulder ²NOAA/ESRL/GSL ³RedLine Performance Solutions at NCEP EMC ⁴Joint Center for Satellite Data Assimilation (JCSDA) ⁵NOAA NWS NCEP EMC ⁶NOAA/NESDIS/STAR ⁷NASA/GMAO ⁸SUNY Albany ⁹South Dakota State University

- Model:
 - Operational cube-sphere GFS-GOCART aerosols (dust, sea-salt, carbonaceous species, sulphate),
 - Resolution ~100km (C96).
- Data Assimilation:
 - 550 nm Aerosol Optical Depth retrievals from VIIRS,
 - Hybrid Ensemble-Variational approach (20 members),
 - JEDI framework.

AOD 550 nm 20150805

"Development of the National Global Data Assimilation Ensemble-based System for Forecasting of Aerosols" by Pagowski and Kleist, grant from Weather Program Office, 2019-2022

FV3-GFS GOCART Model

- FV3-based GFS coupled with the Goddard Chemistry Aerosol Radiance and Transport (GOCART) aerosol scheme at C96 (~100 km)
 - Dust with five size bins
 - Sea salt with five size bins
 - Hydrophobic and hydrophilic organic and black carbon
 - Sulfate
- Blended Global Biomass Burning Emissions Products (GBBEPx) and Fire Radiative Product (FRP)
- Chemistry coupled with the core meteorological model via NUOPC interface

Hybrid Ensemble-Variational Aerosol Data Assimilation System

- Data assimilation (DA) combines model forecasts (background) with information from observations to obtain the best estimate of the true state.
- Joint Effort for Data assimilation Integration (JEDI) the next-generation unified DA system is being developed at JCSDA.
- Developed 3DEnVar ensemble-based DA capability within JEDI for assimilating AOD retrievals to improve global aerosol analyses and forecasts:
 - Thinning of MODIS and VIIRS 550 nm AOD retrievals and formatting in IODA;
 - AOD observation operator using aerosol optical properties in the Community Radiative Transfer Model (CRTM) and included in UFO;
 - FV3-JEDI interface for GOCART aerosols for variational minimization;
 - Modified NCEP's EnKF to operate on native FV3 grid (using until KF's available in JEDI);
 - HofX Forward operator for EnKF;
 - All integrated within NCEP's operational global DA workflow for the future operational application.

Monthly and Globally Averaged Mixing Ratio Profiles of Aerosol Species 6-hour Forecasts Comparison with/without AOD DA

FV3-NODA: FV3-GFS GOCART model 6-hour forecasts without AOD DA FV3-DA: FV3-GFS GOCART model 6-hour forecasts with AOD DA M2/CAMS-Reanal: NASA MERRA-2/ ECMWF CAMSiRA reanalysis

- After AOD assimilation, FV3-DA-Bckg better matchs NASA/EC reanalyses than FV3-NODA for dust and SO4.
- Due to insufficient spread for sea salt, difference between FV3-NODA and FV3-DA-Bckg is relatively small.
- ❑ Largely different mixing ratio profiles between NASA and EC reanalyses suggest large uncertainty of aerosol forecasts and DA.

Innovation Statistics of VIIRS AOD at 550nm

