Model simulation of the Pinatubo volcanic eruption: direct and indirect effects on stratospheric chemistry and dynamics

C Brühl¹, H. Tost², S. Osipov¹, J. Lelieveld¹, K. Klingmüller¹, E. Predybaylo¹, G. Stenchikov³, M. Abdelkader³

1 Max Planck Institute for Chemistry, Mainz, Germany

2 Johannes Gutenberg University, Mainz, Germany

3 Kaust, Saudi Arabia

Model EMAC (V2.54 and V2.52, Jöckel et al., 2010, GMD; Brühl et al., 2018, ACP)

- Model EMAC (V2.54 and V2.52, Jöckel et al., 2010, GMD
Brühl et al., 2018, ACP)
GCM ECHAM5, Resolution T63/L90 (1.9° up to 1 Pa with internal Quasi-
Biennial Oscillation, slightly nudged), meteorology nudged to ERA-Interity Biennial Oscillation, slightly nudged), meteorology nudged to ERA-Interim in troposphere (below 100hPa), observed transient SST.
- MECCA1 chemistry module with sulfur chemistry, scavenging by clouds.
- GMXE aerosol module (4 soluble and 3 insoluble modes with ISORROPIA chemistry, $\sigma_{\text{nuc,ait}}$ =1.59, σ_{acc} =1.49, σ_{cs} =1.7; lower mode boundaries (r)
nucleation 0.0005, aitken 0.006, accum 0.07, coarse 1.6 µm). Interactive with **GCM ECHAM5**, Resolution T63/L90 (1.9° up to 1 Pa with internal Quasi-
Biennial Oscillation, slightly nudged), meteorology nudged to ERA-Interim in
troposphere (below 100hPa), observed transient SST.
MECCA1 chemistry modu dynamics and chemistry, incl. photolysis and heterogeneous reactions.
- Radiative forcing calculated online, aerosol types: dust, organic and black carbon, sulfate, sea salt and aerosol water.
- \blacksquare Volcanic SO₂ and ash plumes derived as 3D fields from SAGE II L2 data (perturbation added at days of eruption, Pinatubo, Hudson, Cerro Negro, Spurr, Lascar), year 1990 for spinup. 2014

SO_2 (17 to 8.5Mt), without and with ash (accum), 20S-20N

by ash causes faster lofting of SO_2 to upper stratosphere, compensating a reduction of the $SO₂$ emission from 17Mt to 12Mt there.

Sulfate in accumulation and coarse mode, 20S-20N

Reducing SO₂ emission to half leads to reduction of coarse mode fraction by factor of 8, much less loss by sedimentation.

Instantaneous aerosol heating rates, 20S-20N

Effects of aerosol on photolysis, NOX and Ozone (left); effect of SO_2 extinction (right)

50

 $NO₂$ increases below 18km, OH below 16km. Patterns of NO_x and NO₂ changes differ because of heterogeneous chemistry. From Pina

May a start of the similar service of
 $\begin{array}{r} \n\text{B} = \frac{1}{56} \\
\text{B} = \frac{1}{56} \\
\text{B} = \frac{1}{54} \\
\text{B} = \frac{1}{54} \\
\text{C} = \frac{1}{54} \\
\text{D} = \frac{1}{$ particularly as the specient, from SQ_2

patterns as ClOx changes are contained by the contract on and the extinction,
 $\frac{18 \text{ km}}{18 \text{ km}}$, OH below 16km.

Patterns of NOx and NO₂

changes differ because of

heterog

 -2

From Pinatubo $SO₂$ plume extinction, additional effect on

O₃ changes due to chemistry and lofting, 20S-20N

Ozone reductions in the early phase from SO_2 extinction, later from heterogeneous chemistry on the aerosol and reduction of photolysis rates by the aerosol. Lofting causes additional ozone reduction at about 25km. Increase below aerosol cloud due to 'self healing' by ozone column reduction above.

Heating rates of Pinatubo with indirect effects, 20S-20N

effects from ozone and temperature changes reduce heating rates substantially.

Temperature change due to Pinatubo, 20S-20N

Methane change as example for dynamical tracer

Methane increase by enhanced upwelling in middle stratosphere due to Pinatubo aerosol

Ash injected in coarse mode with quick sedimentation

Conclusions

- Ozone changes via photolysis changes from aerosol and $SO₂$ extinction, and heterogeneous chemistry, reduce heating
rates of Pinatubo aerosol • Abdelkader, M.,

• Ozone changes via photolysis changes from A., Stenchikov, C. aerosol and SO₂ extinction, and Lelieveld, J., 201

heterogeneous chemistry, reduce heating *Phys.*, 17, 3799-

• Ash in accumulation mode
- Ash in accumulation mode enhances the upwelling due to radiative heating by aerosol
- but causes a short heating pulse and reduces sulfate
- If injected as wide 3D-plume 17 Mt SO₂ appears to be too much to reproduce observed AOD, after about 6 months AOD G. Bardeen, M. J. Mills, M. A.
is similar with half of SO, (consistent with Tolbert, P. Yu and S. Woods, 2020, is similar with half of $SO₂$ (consistent with removal in plume when injected into a small volume or removal by heterogeneous reactions on ash)

References

- Abdelkader, M., Metzger, S., Steil, B., Klingmüller, K., Tost, H., Pozzer, A., Stenchikov, G., Barrie, L., and Lelieveld, J., 2017, Atmos. Chem. Phys., 17, 3799-3821.
- Brühl, C., Schallock, J., Klingmüller, K., Robert, C., Bingen, C., Clarisse, L., Heckel, A., North, P., and Rieger, L., 2018, Atmos. Chem. Phys., 18, 12845–12857.
- Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B., 2010, Geosci. Model Dev., 3, 717–752. L., Heckel, A., North, P., and Rieger,
L., Heckel, A., North, P., and Rieger,
L., 2018, *Atmos. Chem. Phys.*, 18,
12845–12857.
Jöckel, P., Kerkweg, A., Pozzer, A.,
Sander, R., Tost, H., Riede, H.,
Baumgaertner, A., Gromov,
- Y. Zhu , O. B. Toon, E. J. Jensen, C. G. Bardeen, M. J. Mills, M. A. Nature Communications, 11:4526.

Median wet radius (accum)

For area weighted effective radius multiply by 1.38. Biggest particles due to ash in first week, they grow into coarse mode with the tail of the distribution.