Mass to optics MECs, AE and fine / coarse AOD

J. Gliß, A. Mortier, E. Andrews, M. Schulz and community Norwegian Meteorological Institute - MetNO

Phase III Control reference paper

AeroCom phase III multi-model evaluation of the aerosol lifecycle and optical properties using ground and space based remote sensing as well as surface in situ observations

Jonas Gliß¹, Augustin Mortier¹, Michael Schulz¹, Elisabeth Andrews², Yves Balkanski³, Susanne E. Bauer^{20,19}, Anna M. K. Benedictow¹, Huisheng Bian^{4, 5}, Ramiro Checa-Garcia³, Mian Chin⁵, Paul Ginoux⁶, Jan J. Griesfeller¹, Andreas Heckel⁷, Zak Kipling⁹, Alf Kirkevåg¹, Harri Kokkola¹⁰, Paolo Laj¹¹, Philippe Le Sager¹², Marianne Tronstad Lund¹⁵, Cathrine Lund Myhre¹³, Hitoshi Matsui¹⁴, Gunnar Myhre¹⁵, David Neubauer¹⁶, Twan van Noije¹², Peter North⁷, Dirk J. L. Olivié¹, Samuel Rémy²¹. Larisa Sogacheva¹⁷, Toshihiko Takemura¹⁸, Kostas Tsigaridis^{19,20}, and Svetlana G. Tsyro¹ ¹Norwegian Meteorological Institute, Oslo, Norway ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA ³Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSO, Gif sur Yvette Cedex, France ⁴Maryland Univ. Baltimore County (UMBC), Baltimore, MD, USA ⁵NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ⁶NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA ⁷Dept. of Geography, Swansea University, Swansea, UK ⁹European Centre for Medium-Range Weather Forecasts, Reading, UK ¹⁰Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland ¹¹Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, Institute for Geosciences and Environmental Research (IGE), Grenoble, France 12 Royal Netherlands Meteorological Institute, De Bilt, the Netherlands 13 NILU - Norwegian Institute for Air Research, Kjeller, Norway 14 Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan 15 CICERO Center for International Climate and Environmental Research, Oslo, Norway ¹⁶Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ¹⁷Finnish Meteorological institute, Climate Research Program, Helsinki, Finland ¹⁸Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, Japan ¹⁹Center for Climate Systems Research, Columbia University, New York, USA ²⁰NASA Goddard Institute for Space Studies, New York, USA ²¹HYGEOS, Lille, France

Under revision in ACP:

https://acp.copernicus.org/prepr ints/acp-2019-1214/

Revised manuscript available in AeroCom workshop material

Background / Motivation

Simplified scheme of bimodal size distribution - optical effects are indicated for mid-visible wavelengths

- Angstrom Exponent (AE): qualitative indicator of size (inversely related, intensive property).
- Fine / coarse AOD (AOD_f, AOD_c): extensive properties (proportional to mass).
- Coarse regime spectrally flat at 550 nm
 →Variations in AE more sensitive to
 fine mode.
- Mie extinction efficiency Q_{ext} at 550 nm higher for "finer" particles (MEC→MEC(Q_{ext}))
- Scattering enhancement due to water uptake depends on size too →larger for smaller particles (e.g., Zieger et al., 2013).

Background / Motivation

Simplified scheme of bimodal size distribution - optical effects are indicated for mid-visible wavelengths

- Scattering enhancement due to water uptake depends on size too →larger for smaller particles (e.g., Zieger et al., 2013).
- Pure (monomodal) fine aerosol: If a model underestimates AE, it overestimates fine aerosol size effective radius.
- Things are more complex for bimodal mixtures (Schuster et al., 2006).
 - lower (UV) wavelengths more sensitive to fine mode eff. radius.
 - higher (IR) wavelengths more sensitive to fine mode volume fraction.
- Disagreement between models and observations can be due to wrong size, but also composition.

(Some) remaining issues and open questions

- Diagnosing fine and coarse AOD (AOD_f, AOD_c)
 - \circ Some models use dry aerosol, others ambient to determine AOD_f
 - \circ ca 10% difference in attribution of sea salt optical depth (OD) to AOD_f and AOD_c
- Diagnosing species extinction and absorption optical depth
 - AeroCom requirement: *AOD=∑(all species ODs)*
 - Internal mixtures: in some models $AAOD_{BC} > OD_{BC}$
- Diagnosing NO₃ and other new tracers (NH₄), e.g.,
 - some NO₃ contributions are attributed to other species
 (e.g. only fine NO₃ is in od550no3 diagnostic and coarse NO₃ is included in od550ss).

(Some) ideas / recommendations / discussion material

- Diagnosing fine and coarse AOD (AOD_f, AOD_c).
 - Suggestion: More consistency would be helpful; we suggest to use ambient radius for split.
- Diagnosing species extinction and absorption optical depth.
 - BC MEC vs MAC: needs revision on how to best diagnose component ODs and AAODs for internal mixtures
 - Requirement: Models need to ensure that, e.g., AAOD_{BC} < OD_{BC}
 - **Requirement**: $AOD=\sum(all \ species \ ODs)$ (ambient)
- Ambient vs dry vs CS
 - **Suggestion:** We recommend diagnosing both clear-sky and all-sky AOD, to better assess impacts of simulated supersaturated environments.
- Diagnosing NO₃ and other new tracers (NH₄), e.g.,
 - **Suggestion:** If diagnosed explicitly, we suggest that all mass / OD should be attributed in the associated diagnostic.
- Additional AE diagnostics?
 - \circ Vertically resolved AE, SAE, AAE \rightarrow ec440dryaer, ec870dryaer, ac440dryaer, ac870dryaer
 - Spectral curvature: 670-870 nm → sensitive to fine mode volume fraction; 380-440 nm → sensitive to the fine mode effective radius (Schuster et al., 2006).
 - Suggestion: additional output of dry EC and AC as well as AOD at 4 wavelengths between 380 nm and 870 nm. Feasible?
- AOD Speciation and MECs?
 - Suggestion: Total and fine mode burden and optical depth (i.e., loadss, loadlt1ss, od550ss, od550ss, od550lt1ss). Feasible?
- Should there be a CTRL rerun (CTRL 2020) with new diagnostics?
 - Could additional diagnostics be added to existing CTRL 2019 data?
 - Some models may have seen improvements since CTRL 2019, perhaps new runs?