First global overview on the

representation of water uptake by ten Global Climate Models

using a new in-situ benchmark hygroscopicity dataset

M. A. Burgos^{1,2,*}, E. Andrews³, G. Titos⁴, A. Benedetti⁵, H. Bian^{6,7}, V. Buchard^{6,8}, G. Curci^{9,10}, A. Kirkevåg¹¹, H. Kokkola¹², A. Laakso¹², M. Lund¹³, H. Matsui¹⁴, G. Myhre¹³, C. Randles⁶, M. Schultz¹¹, T. Van Noije¹⁵, K. Zhang¹⁶, L. Alados-Arboledas⁴, U. Baltensperger¹⁷, A. Jefferson³, J. Sherman¹⁸, J. Sun¹⁹, E. Weingartner^{17,20} and P. Zieger^{1,2}

> ¹Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden ²Bolin Centre for Climate Research, Stockholm, Sweden ³Cooperative Institute for Research in Environmental Studies, University of Colorado, Boulder, USA ⁴Andalusian Institute for Earth System Research, University of Granada, Granada, Spain ⁵European Centre for Medium-Range Weather Forecasts, Reading, UK ⁶NASA/Goddard Space Flight Center, USA ⁷University of Maryland Baltimore County, Maryland, USA ⁸GESTAR/Universities Space Research Association, Columbia, USA ⁹Dipartimento di Scienze Fisiche e Chimiche, Universita' degli Studi dell'Aquila, L'Aquila, Italy ¹⁰Centre of Excellence CETEMPS, Università degli Studi dell'Aquila, L'Aquila, Italy ¹¹Norwegian Meteorological Institute, Oslo, Norway ¹²Finnish Meteorological Institute, Kuopio, Finland ¹³Center for International Climate Research, Oslo, Norway ¹⁴Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan ¹⁵Royal Netherlands Meteorological Institute, De Bilt, Netherlands ¹⁶Earth Systems Analysis and Modeling, Pacific Northwest National Laboratory, Richland, WA, USA ¹⁷Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland ¹⁸Department of Physics and Astronomy, Appalachian State University, Boone, USA ¹⁹Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China ²⁰Now at: Institute for Sensing and Electronics, University of Applied Sciences, Windisch, Switzerland

Funded by US Department of Energy. Project number: DE-SC0016541 <u>*Maria.Burgos@aces.su.se</u>

AeroCom Annual Meeting, 12 October 2020

Aerosols and Climate and Water

HYGROSCOPICITY:

Since aerosol particles can take up water, they can change in size and chemical composition depending on the ambient relative humidity (RH) $\frac{\text{SCATTERING ENHANCEMENT FACTOR}}{f(RH,\lambda)} = \frac{\sigma_{sp}(RH,\lambda)}{\sigma_{sp}(RHdry,\lambda)}$

Interestingly, most models are doing well in reproducing the total aerosol optical depth (AOD), but a closer look into the individual components reveals discrepancies between them

Fraction of aerosol optical depth due to water:

How well do Earth System Models represent aerosol optical hygroscopic growth?

This presentation summarizes our work, published in ACP

Figures from Mian Chin (NASA Goddard)

Measurement and Model Data:

Hygroscopicity benchmark dataset

Burgos et al., 2019:

f(RH) measurements from in-situ sites around the globe used to create a benchmark dataset

MODEL	Chemical composition	Mixing State	Ну	groscopicity [g	[RH=90%)]		14. •	
			parameterization	SS	so4	bc	оа	dd
ATRAS	bc,so4,oa,ss,dd + no3/nh4	I.	к-Köhler Theory	2.25	1.87	1.0	1.24	1.0
CAM	bc,so4,oa,ss,dd	I.	к-Köhler Theory	2.25	1.77	1.0	1.24	1.2
CAM-Oslo	bc,so4,oa,ss,dd	I,E	к-Köhler Theory	2.28	1.77	1.0	1.31	1.2
GEOS-Chem	bc,so4,oa,ss,dd + no3/nh4	E	Modified GADS	2.38	1.64	1.4	1.64	1.0
GEOS-GOCART	bc,so4,oa,ss,dd	E	Modified GADS	1.9-2.1	1.8	1.4	1.6	1.0
MERRAero	bc,so4,oa,ss,dd	E	Modified GADS	1.9-2.1	1.8	1.4	1.64	1.0
OsloCMT3	bc,so4,oa,ss,dd + no3/nh4	I.	Own development	2.3-2.4	1.72	1.0	1.46	1.0
TM5	bc,so4,oa,ss,dd + no3/nh4	I, E	Own development	-	-	1.0	1.0	1.0
IFS-AER	bc,so4,oa,ss,dd + no3/nh4	E	Own development	2.36	1.73	1.0	1.64	1.0
SALSA	bc,so4,oa,ss,dd	E	Own development	2.4	1.9	1.0	1.5	1.0

Model data: INSITU project -AeroCom Phase III

1.2

Main characteristics implemented by each model

Main Results:

(1) Modeled vs Measured *f*(RH)

(2) f(RH) vs. organic mass fraction

- (Some) models reproduce the range in measured *f*(RH)
- (Some) models: similar *f*(RH)-OMF relationship as parameterizations
- Diversity of behaviors: Good correlation / Inverse correlation

(3) f(RH) of sea salt dominated aerosol at Graciosa

• (Some) models treats sea salt as NaCl

RH (%)

• (Some) models: simulate inorganic sea salt (wrong kappa for NaCl)

RH (%)

 TM5: correctly models salt to be fully solid (=NaCl) as expected, while other models assume growth at RH<40⁴/₈

Conclusions :

- GEOS-family models assign too much hygroscopicity to all species -> narrow *f*(RH) range
- Models that best reproduce the observed relationship between f(RH) and OMF are those that assume lower hygroscopicity for organics this allows these models to simulate a wider range of f(RH).
- Different assumptions about the hygroscopicity of sea salt explain some model variation at a marine location -> some models assume sea salt can be represented by NaCl, while others do not

Recommendations:

- 1. Update the hygroscopic parameterization of some components (e.g. sea salt) and parameterizations based on OPAC
- 2. Reproducing observational-based parameterizations of *f*(RH) using chemical mass fractions
- 3. Compare models and measurements at similar conditions:
 - -> Models: calculate σ at the same variable RH conditions as the measurements
 - -> Measurements: control RH_{drv} < 40% + maintaining a narrower RH_{drv} distribution

Proposed AeroCom activities:

- 1. Experiment with common/improved hygroscopicity scheme for all ESMs
- 2. f(RH) for individual aerosol components from models (see sea spray comparison)
- 3. Take into account other variables (e.g. size distribution)
- 4. Study the influence on aerosol (e.g. AOD, radiative forcing, lifetime) and cloud properties with improved hygroscopicity scheme
- 5. Is it possible to model backscattering? Is it available already? (We could calculate forcing efficiency at dry and wet conditions)