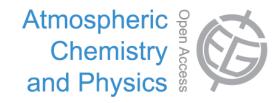
Aerosol and component life cycle diversity: organics

Kostas Tsigaridis

kostas.tsigaridis@columbia.edu



6 years passed...

Atmos. Chem. Phys., 14, 10845–10895, 2014 www.atmos-chem-phys.net/14/10845/2014/doi:10.5194/acp-14-10845-2014 © Author(s) 2014. CC Attribution 3.0 License.

The AeroCom evaluation and intercomparison of organic aerosol in global models

K. Tsigaridis 1,2 , N. Daskalakis 3,4 , M. Kanakidou 3 , P. J. Adams 5,6 , P. Artaxo 7 , R. Bahadur 8 , Y. Balkanski 9 , S. E. Bauer 1,2 , N. Bellouin 10,a , A. Benedetti 11 , T. Bergman 12 , T. K. Berntsen 13,14 , J. P. Beukes 15 , H. Bian 16 , K. S. Carslaw 17 , M. Chin 18 , G. Curci 19 , T. Diehl 18,20 , R. C. Easter 21 , S. J. Ghan 21 , S. L. Gong 22 , A. Hodzic 23 , C. R. Hoyle 24,25 , T. Iversen 11,26,13 , S. Jathar 5 , J. L. Jimenez 27 , J. W. Kaiser 28,11,29 , A. Kirkevåg 26 , D. Koch 1,2,b , H. Kokkola 12 , Y. H Lee 5,c , G. Lin 30 , X. Liu 21,d , G. Luo 31 , X. Ma 32,e , G. W. Mann 33,34 , N. Mihalopoulos 3 , J.-J. Morcrette 11 , J.-F. Müller 35 , G. Myhre 14 , S. Myriokefalitakis 3,4 , N. L. Ng 36 , D. O'Donnell 37,f , J. E. Penner 30 , L. Pozzoli 38 , K. J. Pringle 39,29 , L. M. Russell 9 , M. Schulz 26 , J. Sciare 9 , Ø. Seland 26 , D. T. Shindell 2,1,g , S. Sillman 30 , R. B. Skeie 14 , D. Spracklen 17 , T. Stavrakou 35 , S. D. Steenrod 20 , T. Takemura 40 , P. Tiitta 15,41 , S. Tilmes 23 , H. Tost 42 , T. van Noije 43 , P. G. van Zyl 15 , K. von Salzen 32 , F. Yu 31 , Z. Wang 44 , Z. Wang 45 , R. A. Zaveri 21 , H. Zhang 44 , K. Zhang 21,37 , Q. Zhang 46 , and X. Zhang 45

OA literature worth looking into

Reviews of Geophysics

REVIEW ARTICLE

10.1002/2016RG000540

Key Points:

- We review some important developments in secondary organic aerosol (SOA) that could impact aerosol radiative forcing and response of climate to greenhouse gases
- We highlight some of the important processes that involve interactions between natural biogenic emissions and anthropogenic emissions
- We discuss fundamental SOA properties volatility and viscosity and their relation to evolution of aerosol mass and number concentrations in the atmosphere

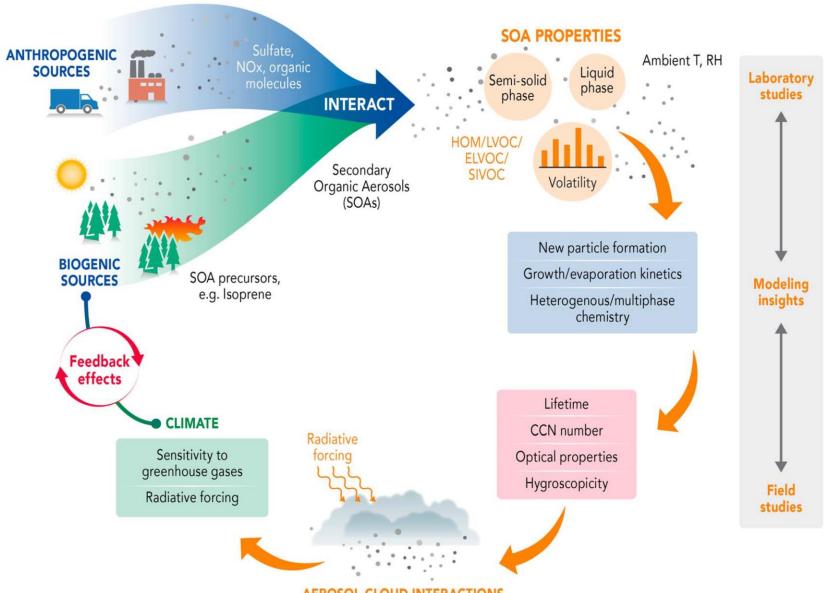
Recent advances in understanding secondary organic aerosol: Implications for global climate forcing

```
Manish Shrivastava<sup>1</sup> D, Christopher D. Cappa<sup>2</sup> D, Jiwen Fan<sup>1</sup> D, Allen H. Goldstein<sup>3</sup> D, Alex B. Guenther<sup>4</sup> D, Jose L. Jimenez<sup>5</sup> D, Chongai Kuang<sup>6</sup>, Alexander Laskin<sup>1</sup> D, Scot T. Martin<sup>7</sup>, Nga Lee Ng<sup>8</sup> D, Tuukka Petaja<sup>9</sup>, Jeffrey R. Pierce<sup>10</sup>, Philip J. Rasch<sup>1</sup> D, Pontus Roldin<sup>11</sup>, John H. Seinfeld<sup>12</sup> D, John Shilling<sup>1</sup> D, James N. Smith<sup>4</sup> D, Joel A. Thornton<sup>13</sup> D, Rainer Volkamer<sup>5</sup> D, Jian Wang<sup>6</sup>, Douglas R. Worsnop<sup>14</sup>, Rahul A. Zaveri<sup>1</sup> D, Alla Zelenyuk<sup>1</sup> D, and Qi Zhang<sup>15</sup> D
```

Current Climate Change Reports https://doi.org/10.1007/s40641-018-0092-3

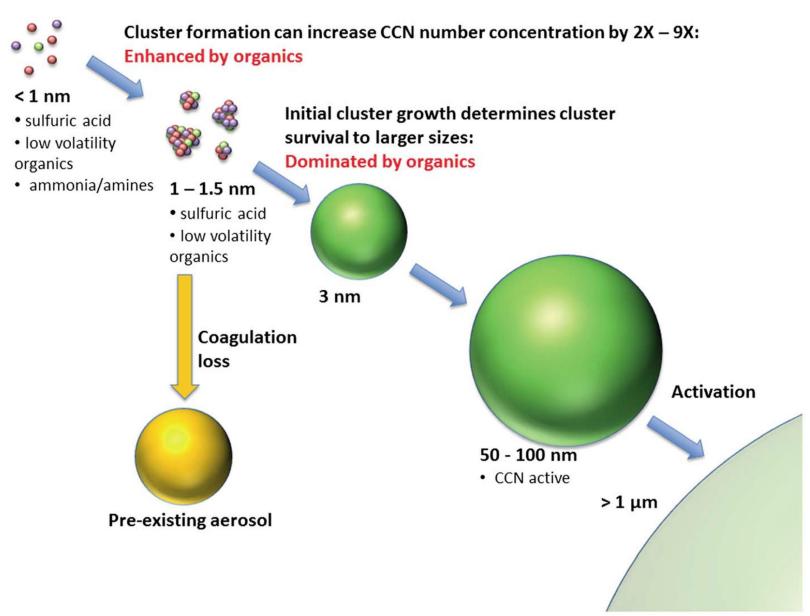
AEROSOLS AND CLIMATE (O BOUCHER AND S REMY, SECTION EDITORS)

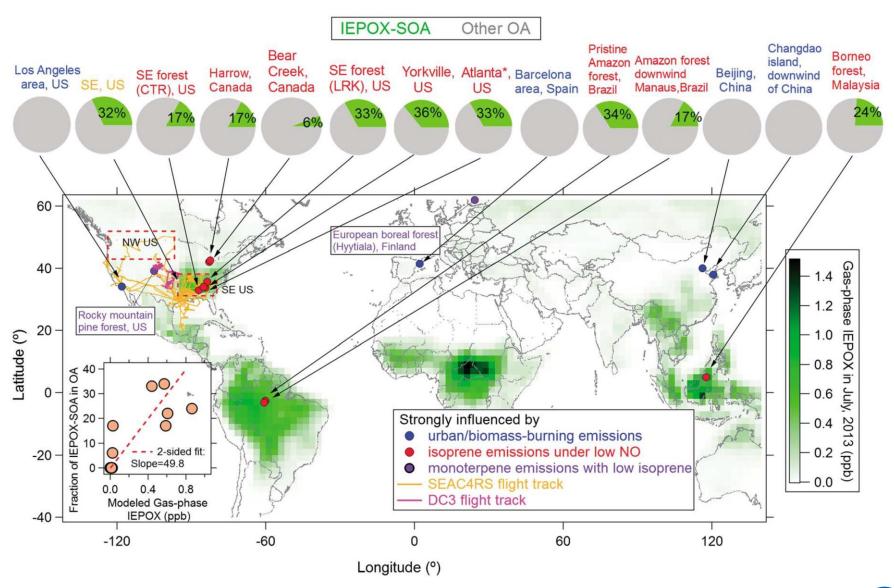
Climate impacts

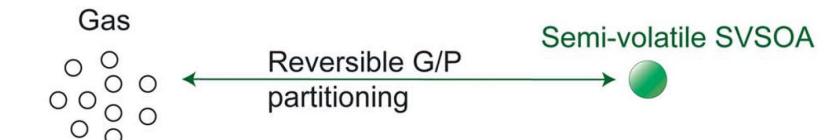

Processes

The Present and Future of Secondary Organic Aerosol Direct Forcing on Climate

Kostas Tsigaridis 1,2 D • Maria Kanakidou 3

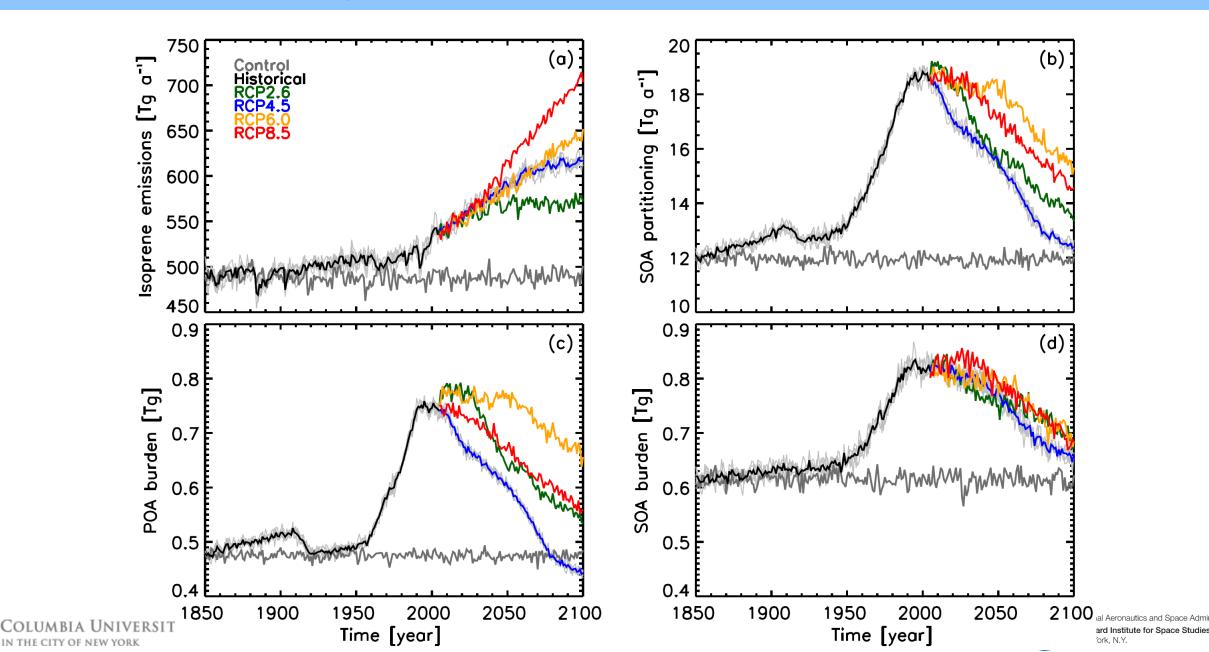






(1) Default Semi-volatile SVSOA

(2) Non-volatile NVSOA Oligomerization


(3) Extremely low volatility organics (ELVOCs)

Tsigaridis and Kanakidou, 2018

Food for thought

- Now many of us modelers have improved their models by using VBS, but ignoring:
 - Nucleation
 - IEPOX
 - Aerosol phase (liquid or solid)
 - SOA photolysis
 - Oligomerization
 - xxxVOC species
 - Brown carbon
 - Accurate temperature dependence
 - Chemical regime dependence
- How much do/should we care?
 - Is the answer different for CTMs and GCMs?
 - The answer IS different for global vs. regional vs. local vs. campaign studies.

