Progress Report Trans-Atlantic Dust Deposition (TADD)

Hongbin Yu, NASA Goddard Space Flight Center Hongbin.Yu@nasa.gov, 301-614-6209

Objective: To identify major model deficiencies in simulating the trans-Atlantic dust transport and deposition through comparisons against satellite and surface observations

AeroCom III CTRL Experiment (16 models)

Model	Model version	xdim	ydim	zdim	dlon	dlat	Institution/Country	POCs (name, email)
BCC	BCC-CUACE	128	64	26	2.813	2.813	CMA, China	Hua Zhang (huazhang@cma.gov.cn), Bing Xie (xieb@cma.gov.cn)
CAM5	CAM5-ATRAS	144	96	30	2.500	1.875	Nagoya Univ, Japan	Hitoshi Matsui (matsui_at_nagoya-u.jp)
EC-Earth3	EC-Earth3-AerChem-met2010	120	90	34	3.000	2.000	KNMI, Netherlands	Twan van Noije (noije@knmi.nl)
ECHAM-HAM	ECHAM6.3-HAM2.3	192	96	47	1.875	1.875	MPI, Germany	David Neubauser
ECHAM-SALSA	ECHAM6.3-SALSA2.0	192	96	47	1.875	1.875		Harri Kokkola
ECMWF-CY45	ECMWF-IFS-CY45R1-CAMS	1024	512		0.352	0.352	ECMWF	
ECMWF-CY46	ECMWF-IFS-CY46R1-CAMS	1024	512		0.352	0.352	ECMWF	
GEOS	GEOS-i33p2	360	181	72	1.000	0.994	NASA GSFC, USA	Huisheng Bian (huisheng.bian@nasa.gov), Tom Kucsera (tom.l.kucsera@nasa.gov), Mian.Chin@nasa.gov
GFDL	GFDL-AM4	288	180	33	1.250	1.000	NOAA GFDL, USA	Paul.Ginoux@noaa.gov
GISS-MATRIX	GISS-modelE2p1p1-MATRIX	144	90	40	2.500	2.000	NASA GISS, USA	Kostas Tsigaridis (kostas.tsigaridis@columbia.edu); Susanne Bauer (susanne.bauer@columbia.edu)
GISS-OMA	GISS-modelE2p1p1-OMA	144	90	40	2.500	2.000	NASA GISS, USA	Kostas Tsigaridis (kostas.tsigaridis@columbia.edu); Susanne Bauer (susanne.bauer@columbia.edu)
INCA	INCA	144	143		2.500	1.259	IPSL-LSCE, France	Ramiro Checa-Garcia <rcheca@lsce.ipsl.fr></rcheca@lsce.ipsl.fr>
SPRINTARS	MIROC-SPRINTARS	640	320	40	0.563	0.563	Kyusu Univ., Japan	Toshihiko Takemura (toshi@riam.kyushu-u.ac.jp)
NorESM2	NorESM2-met2010	288	192	32	1.250	0.938	Norway	
OsloCTM3	OsloCTM3v1.01-met2010	160	80	60	2.250	2.250	CICERO, Norway	Gunnar Myhre (gunnar.myhre@cicero.oslo.no)
TM5	TM5-met2010	120	90	34	3.000	2.000	KNMI, Netherlands	Twan van Noije (noije@knmi.nl)

Dust emissions

PSD wrt dust mass

PSD wrt dust optical depth

Dust MEE @ 550 nm

Dust Source regions

Dust Optical Depth

Dust optical depth - compared with AERONET

AERONET coarse-mode AOD from SDA retrieval

Surface dust concentration

We will also look into surface PM₁₀ concentrations measured in Cayenne, and 3 AMMA sites along the Sahelian dust transect (i.e., Banizoumbou, Cinzana, Mbour)

> But it is a bit tricky because not all models cut off at 10 μ m.

Dust Deposition

Deposition

Annual Dust Deposition Rate (mg m^{-e} d⁻¹) (a) CALIOP

Caribbean Sea

CALIOP

MODIS

MISR IASI

BCC

CAM5

GEOS

GFDL

INCA

NorESM2

TM5

0

3

6

EC-Earth3

ECHAM-HAM

ECHAM-SALSA

ECMWF-CY45

ECMWF-CY46

GISS-MATRIX

GISS-OMA

SPRINTARS

OsloCTM3

Dust Loss Frequency

Loss Frequency (LF) = <u>Dust Deposition Rate</u> Dust Mass Loading

- how fast dust is removed from the atmosphere
- a reciprocal of dust residence time
- more accurate than dust deposition and mass loading
 only possible from satellites
- useful for isolating uncertainty of transport/removal from that of emissions

Gulf of Guinea + E. Atlantic + Caribbean Basin

Rainfall bias compared to GPCP

High bias in precipitation is consistent with larger loss frequency for some models in Gulf of Guinea (e.g., BCC, TM5)
Other possible factors include wet/dry removal parameterizations (e.g., scavenging coefficients), vertical distributions, etc.

GEOS model sensitivity tests

Exp name	f _{con}	f _{wet}
Exp4	1.0	0.3
Exp5	0.2	0.8
Exp6	0.1	0.5

Evolution from AeroCom II to AeroCom III

Way forward

Collect some basic information about parameterizations of dust processes (size, gravitational settling, wet removals, precipitation, etc)

Extend model evaluations by using
Surface PM₁₀ observations
Dust vertical profiles from CALIOP
Other experiments (e.g., HIST, UTLS, etc.) to investigate interannual variations (2007–2016)