

AeroCom aircraft comparison experiment

Duncan Watson-Parris and Philip Stier

Sarah Doherty (University of Washington), Jens Redemann (NASA Ames), Shuka Schwarz (NOAA), Mian Chin (NASA Goddard), Paola Formenti (CNRS), Rob Wood (University of Washington), Andi Anreae (MPI-C, Mainz), Markus Hermann (IAGOS CARIBIC), Hugh Coe (University of Manchester), Jamie Trenbeth (FAAM)

Dirk Olivie (MetNo), Bjørn H. Samset (CICERO), Gunnar Myhre (CICERO), Laurent Labbouz (Toulouse), Jialei Zhu (University of Michigan), Joyce Penner (University of Michigan), Huisheng Bian (NASA Goddard), Andrew Gettleman (NCAR), Ken Carslaw (University of Leeds)

New

Outline

E.g. C. L. Reddington et al., BAMS 2017

Setup

Tier 1 – 2017 only

• This one-year experiment will support the main analyses. The requested model setup is identical to the Phase III control experiment

Tier 2 – Pre-Industrial (optional)

• We also request a pre-industrial run (1850) to investigate natural aerosol and how representative remote campaigns are of 'pristine' conditions.

Tier 2 – Hindcast (optional)

• A full hindcast is requested to run for 2008 through to 2018 to explore the inter-annual variability of remote aerosol and assumptions made in Tier 1.

Diagnostics

Aerosol	Cloud	Thermodynamics	Radiation
CCN at: 0.05%, 0.08%, 0.12%,	Cloud droplet effective radius	Air temperature	Ambient aerosol scattering coefficient at 550nm
0.16%, 0.20%, 0.25%, 0.3%, 0.35%, 0.45%, 0.55%, 0.60%, 0.75%,	Cloud droplet number concentration	Air density	Ambient aerosol absorption coefficient at 550nm
N4 N10 N18 N50	Liquid water path	Specific humidity	Single scattering albedo at 550nm
N80, N120, N150		Relative humidity	Dry aerosol Scattering coefficient at 550nm
Concentrations of BC, OC, Sea Salt, DMS, MSA, NO3,		Omega (dp/dt)	Dry aerosol absorption coefficient at 550nm

Climate Processes Group

Arth

Example analyses

Campaigns	ORACLES + CLARIFY + AEROCLO-SA	GASSP	ATom
Example analyses	A Biomass burning	CI Vertical d Source	stribution eceptor

Community Intercomparison

Example analyses

e.g. D. Watson-Parris et al., Atmos. Chem. Phys. 2019

ECHAM-HAM

Southern

Northern

BC multi-model perturbed physics ensemble (MMPPE)

Duncan Watson-Parris, Lucia Deaconu, Lindsay Lee, Andrew Gettelman, Ken Carslaw and Philip Stier

Community Intercomparison Suite

Black Carbon experiment (PPE)

1. Constrain models using observations

2. Compare (constrained) models to each other

Perturbed parameters for BC PPE

- Implementation test -

Atmospheric burden	Aerosol number: Scale mass flux of BC carbonaceous emission	[X*0.5, X*2]
	Wet deposition: Scale removal tendencies/change in droplet number	[Y*0.3 <i>,</i> Y*3]
Radiative properties	BC optical properties: Scale the imaginary part of refractive index	[0.0, 0.2, 0.8]

Climate Processes Group

OXFORD

ommunity

1. Constrain models using observations

AERONET AAOD constraints ASO 2017

- Large values of IRI correspond to low values of BC number and higher values of Wet Dep
- AeroNet rules our combinations of high emissions and high IRI

(Deaconu et al., in preparation)

1. Constrain models using observations

Climate Processes Group

ORACLES & CLARIFY BC mass concentration 2-4km

- Constrains strongly the BC emissions towards the lower end of the parameter space (towards small values).
- The Wet Deposition is also quite well constrained (which was expected).
- Different observations are consistent on their constrained result, which is encouraging for applying a combined constraint

(Deaconu et al., in preparation)

OXFORD

2. Compare models to each other

Multi-model experiments

