Xiaohua Pan ^{1, 2}, Ralph Kahn ², Mian Chin ², Hitoshi Matsui ³, Toshihiko Takemur⁴, Bing Xie ⁵,Hua Zhang ⁵, Maria Val Martin ⁶

¹ ADNET systems, INC., USA; ² NASA GSFC, USA; ³ Nagoya University, Japan; ⁴ Kyushu University, Japan; ⁵ China Meteorological Administration, China; ⁶ University of Sheffield, England

Update on Biomass Burning Emission Injection Height Experiment (BBEIH)

AeroCom III multi-model comparison:

A plume rises over a vineyard in Kapa County as the Kennessey Fire burns on Tuesday, Aug. 18, 2020

(A & Photo/Noah Berger)

eroomero virtual meeting ct

Why do we care about smoke-emission heights?

- **1. Chemical processes** within plumes are sensitive to ambient relative humidity, temperature, smoke-cloud interactions, and photolysis rates all of which depend on smoke injection height (e.g. PAN).
- Smoke injected into the free troposphere generally travels farther downwind than smoke emitted into the PBL;
- 3. The **surface concentration** of air pollutants near and downwind of fire sources is sensitive to smoke plume elevation and transport;
- 4. Both **dry and wet removal process** are more efficient in the PBL than in the free troposphere;
- 5. **Aerosol-climate interactions** depend on the vertical distribution of smoke (above, in, or below cloud)

The objectives of **BBEIH**

We aim to address the following scientific questions:

- To what degree does the aerosol associated with biomass burning impact near-source and downwind conditions?
- To what extent are model simulations sensitive to the assumed biomass burning injection height, in terms of near-source characteristics and downwind plume evolution: (a) vertical aerosol distribution, (b) nearsurface aerosol concentration, (c) aerosol optical depth
- In which regions/seasons/surface-types are the aforementioned sensitivities significant?
- To what extent do the aforementioned sensitivities vary across different models?

Four model experiments

- □ BASE: All emissions including burned-area based on BB GFED4.1s, using model-default biomass burning injection height (i.e., smoke distributed within PBL).
- BBIH: Same as BASE, but distribute biomass burning emissions vertically constrained by the MISR plume injection height weighting function* (Val Martin et al., 2010; 2018).
- **NOBB:** No biomass burning emissions.
- **BBEM:** (optional) Same as BASE, but using daily FRP-based **BB FEER** emission.

* Note: MISR observations occur in late morning local time (~10:30 AM ± 1 hr.)

Status of model participation

Model Name/ (lon*lat)	Contact	Email	BASE	BBIH	NOBB	BBEM
BCC-CUACE (2.8*2.8)	Bing Xie, Hua Zhang	xieb@cma.gov.cn	Done	Done	Done	
CAM5-ATRAS (2.5*1.9)	Hitoshi Matsui	matsui@nagoya- u.jp	Done ^{dy (2d)}	Done ^{dy(2d)}	Done ^{dy(2d)}	Done ^{dy(2d)}
MIROC- SPRINTARS (0.56*0.56)	Toshihiko Takemur	toshi@riam.kyushu- u.ac.jp	Done dy (2d+3d)	Done dy (2d+3d)	Done dy (2d+3d)	Done dy (2d+3d)
GEOS-i33p2 (0.5*0.5)	Xiaohua Pan	Xiaohua.pan@nasa. gov	Done dy (2d+3d), hr (2d+3d)	Done dy (2d+3d), hr (2d+3d)	Done dy (2d+3d), hr (2d+3d)	Done dy (2d+3d), hr (2d+3d)

Monthly output is the default. Additional output other than monthly:

- \circ ^{dy}: daily output
- hr: 3-hourly output (I didn't see anyone else submit this, so I need to follow up later after figuring out how to sample the results according to the flight track).

Preliminary results

Focused events:

Siberia Fires occurred in April 2008

Variables:

AOD

RGB image from MODIS-Aqua overlayed with fire detections by both day and night Aqua and Terra April 2, 2008 (credit: NASA WorldView)

Land cover (https://lcviewer.vito.be/2015)

Satellite:

- Strong outflow of aerosols from the north of China towards Sea of Okhotsk and Bering Sea (AOD >0.5)
- Hint of high aerosol loading in Kazakhstan (AOD ~ 1)

MODIS-Aqua MOD-a od550aer Apr 2008-2008 (avg= 0.180) 90N 60N 30N 30S 60S 90S 300W 60E 120F 240W 0.50 0.60 0.70 0.80 1.0 4.7 0.30 0.40 SPR-BASE od550aer Apr 2008-2008 (avg= 0.085) 90N 60N 30N 30S 60S 90S 60E 300W 2401/ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.0 0.05

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.0 3.7

Satellite:

- Strong outflow of aerosols (max AOD ~0.8) from the north of China towards Sea of Okhotsk and Bering Sea
- Hint of high aerosol loading in Kazakhstan (AOD ~ 1)

BASE:

- The outflow of aerosols from the north of China is underestimated (max AOD ~ 0.3)
- Hint of high aerosol loading in Kazakhstan (AOD up to 0.4)

CAM-NOBB_od550aer_Apr_2008-2008 (avg= 0.062)

MODIS-Aqua

SPR-NOBB_od550aer_Apr_2008-2008 (avg= 0.067)

0 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.0 3.

Satellite:

- Strong outflow of aerosols (max AOD ~0.8) from the north of China towards Sea of Okhotsk and Bering Sea
- Hint of high aerosol loading in Kazakhstan (AOD ~ 1)

BASE:

- The outflow of aerosols from the north of China is underestimated (max AOD ~ 0.3)
- Hint of high aerosol loading in Kazakhstan (AOD up to 0.4)

NOBB:

 The outflow of anthropogenic and dust aerosols from the north of China is captured

Satellite:

- Strong outflow of aerosols (max AOD ~0.8) from the north of China towards Sea of Okhotsk and Bering Sea
- Hint of high aerosol loading in Kazakhstan (AOD ~ 1)

BASE:

- The outflow of aerosols from the north of China is underestimated (max AOD ~ 0.3)
- Hint of high aerosol loading in Kazakhstan (AOD up to 0.4)

Diff_CAM-NOBB-BASE od550aer_Apr2008-2008 (avg=-0.006

=-0.00 Diff_SPR-NOBB-BASE od550aer_Apr2008-2008 (avg=-0.01 Diff_GES-NOBB-BASE od550aer_Apr2008-2008 (avg=-0.01

NOBB – BASE → smoke

 The outflow of smoke-aerosols from the north of China is about 0.01-0.2

10

Satellite:

- Strong outflow of aerosols (max AOD ~0.8) from the north of China towards Sea of Okhotsk and Bering Sea
- Hint of high aerosol loading in Kazakhstan (AOD ~ 1)

BASE:

- The outflow of aerosols from the north of China is underestimated (max AOD ~ 0.3)
- Hint of high aerosol loading in Kazakhstan (AOD up to 0.4)

-0.70 -0.30 -0.20 -0.10 -0.05 -0.01 0.01 0.05 0.10 0.20 0.30 0

Diff_SPR-BBIH-BASE od550aer_Apr2008-2008 (avg=-0.015

30S

60S

90S

Diff_GES-BBIH-BASE od550aer_Apr2008-2008 (avg= 0.002

-0.20 -0.10 -0.05 -0.01 0.01 0.05 0.10 0.20 0.30

BBIH – **BASE** \rightarrow MISR plume height

 The outflow of smoke-aerosols from the north of China increased in GEOS by 0.01-0.05, almost no difference in CAM, and less in SPR

11

Satellite:

- Strong outflow of aerosols (max AOD ~0.8) from the north of China towards Sea of Okhotsk and Bering Sea
- Hint of high aerosol loading in Kazakhstan (AOD ~ 1)

BASE:

- The outflow of aerosols from the north of China is underestimated $(max AOD \sim 0.3)$
- Hint of high aerosol loading in Kazakhstan (AOD up to 0.4)

Diff CAM-BBEM-BASE od550aer Apr2008-2008 (avg= 0.008 **BBEM** BASE 90S 300W

> -0.20 -0.10 -0.05 -0.01 0.01 0.05 0.10 0.20

BBFM – **BASE** \rightarrow FFFR – GFFD4s

The smoke-aerosols from both the fire source regions and the outflow are greater with FEER than with GFED4s across all models by 0.01-0.05

12

Thank you

Wiki website: <u>https://wiki.met.no/aerocom/phase3-</u> <u>experiments#biomass_burning_emission_injection_</u> <u>height_experiment_bbeih</u>

Phase III Organizers: Xiaohua Pan, Ralph Kahn, Mian Chin, Maria Val Martin

Contacts: Xiaohua <u>xiaohua.pan@nasa.gov, and</u> Ralph Kahn <u>ralph.kahn@nasa.gov</u>

References

- Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., Andreae, M. O., Prins, E., Santos, J. C., Gielow, R., and Carvalho Jr., J. A.: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 3385-3398, https://doi.org/10.5194/acp-7-3385-2007, 2007.
- *Gonzalez-Alonso*, L., M. Val Martin, and R.A. Kahn, 2018. Biomass burning smoke heights over the Amazon observed from the space. *Atmosph. Chem. Phys.* 19, 1685–1702, doi: 10.5194/acp-19-1685-2019.
- Petrenko, M., Kahn, R., Chin, M., & Limbacher, J. (2017). Refined use of satellite aerosol optical depth snapshots to constrain biomass burning emissions in the GOCART model. Journal of Geophysical Research: Atmospheres, 122, 10,983–11,004. <u>https://doi.org/10.1002/2017JD026693</u>.
- Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Kucsera, T., da Silva, A., Wang, J., Oda, T., and Cui, G.: Six Global Biomass Burning Emission Datasets: Inter-comparison and Application in one Global Aerosol Model, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-475, in review, 2019.
- Val Martin, M. R.A. Kahn, and M. Tosca, 2018. A Global Climatology of Wildfire Smoke Injection Height Derived from Space-based Multi-angle Imaging. *Remote Sensing 10,* 1609; doi:10.3390/rs10101609.
- *Vernon*, C. J., Bolt, R., Canty, T., and Kahn, R. A.: The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model, Atmos. Meas. Tech., 11, 6289–6307, https://doi.org/10.5194/amt-11-6289-2018, 2018.
- Zhu, L., M. Val Martin, A. Hecobian, M.N. Deeter, L.V. Gatti, R.A. Kahn, and E.V. Fischer, 2018. Development and implementation of a new biomass burning emissions injection height scheme for the GEOS-Chem model. *Geosci. Model Develop.* 11, 4103–4116, doi:10.5194/gmd-11-4103-2018.

Current limitations of model: NASA GEOS

During April 2008, only 45% of smoke is emitted within PBLH over RUS1.
However, by default, the GEOS model emits all smoke within PBLH.

April 2008

100

0.01

General impact of Siberia fires (BASE):

SMASS: enhanced over source region RUS1 by ٠ 49.70 ug/m^3 , and adjacent downwind regions (RUS2) by 5.05 ug/m^3 , (PAC1) by 1.83 ug/m^3 as well as over the entire northern hemisphere around 0.1-1 ug/m^3 .

Column mass load (CMASS) of OC from fire

Difference (BBIH-BASE)

- SMASS: Reduced near source region (RUS1) by 28.86 ug m⁻³; but enhanced over downwind regions RUS2 by 0.46 ug m⁻³, and PAC1 by 0.32 ug m⁻³
- **CMASS**: Reduced close to source region (RUS1) by 3.43 ug m⁻² but enhanced over downwind region RUS2 by 4.03 ug m⁻², PAC1 by 1.91 ug m⁻²

MISR smoke injection height

Val Martin, Kahn & Tosca; 2018

Bonus:

We will provide a gridded MISR injection height weight function for you!!! (lon, lat, lev, mon)

Observational datasets used to validate model

AOD

MODIS, MISR, and AERONET

AAOD and AI

OMI and OMPS

Vertical profile of aerosol extinction profile

CALIOP and OMPS

Vertical profile of atmospheric composition USA and Canada: ARCTAS (2008)

• Russia: ???

Surface aerosol concentration network

```
    ○ USA:
    ✓ EPA: (PM<sub>2.5</sub>, PM<sub>10</sub>)
    ✓ IMPROVE: 2005-2011, daily, species (BC, OM, aerbext)
    ○ Canada: ??
    ○ Russia: ???
```