Status of phase III CTRL Overview of Gliß et al., 2020 paper

J. Gliß, A. Mortier, E. Andrews, M. Schulz and community Norwegian Meteorological Institute - MetNO

Phase III Control reference paper

AeroCom phase III multi-model evaluation of the aerosol lifecycle and optical properties using ground and space based remote sensing as well as surface in situ observations

Jonas Gliß¹, Augustin Mortier¹, Michael Schulz¹, Elisabeth Andrews², Yves Balkanski³, Susanne E. Bauer^{20,19}, Anna M. K. Benedictow¹, Huisheng Bian^{4, 5}, Ramiro Checa-Garcia³, Mian Chin⁵, Paul Ginoux⁶, Jan J. Griesfeller¹, Andreas Heckel⁷, Zak Kipling⁹, Alf Kirkevåg¹, Harri Kokkola¹⁰, Paolo Laj¹¹, Philippe Le Sager¹², Marianne Tronstad Lund¹⁵, Cathrine Lund Myhre¹³, Hitoshi Matsui¹⁴, Gunnar Myhre¹⁵, David Neubauer¹⁶, Twan van Noije¹², Peter North⁷, Dirk J. L. Olivié¹, Samuel Rémy²¹. Larisa Sogacheva¹⁷, Toshihiko Takemura¹⁸, Kostas Tsigaridis^{19,20}, and Svetlana G. Tsyro¹ ¹Norwegian Meteorological Institute, Oslo, Norway ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA ³Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSO, Gif sur Yvette Cedex, France ⁴Maryland Univ. Baltimore County (UMBC), Baltimore, MD, USA ⁵NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ⁶NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA ⁷Dept. of Geography, Swansea University, Swansea, UK ⁹European Centre for Medium-Range Weather Forecasts, Reading, UK ¹⁰Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland ¹¹Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, Institute for Geosciences and Environmental Research (IGE), Grenoble, France 12 Royal Netherlands Meteorological Institute, De Bilt, the Netherlands 13 NILU - Norwegian Institute for Air Research, Kjeller, Norway 14 Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan 15 CICERO Center for International Climate and Environmental Research, Oslo, Norway ¹⁶Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ¹⁷Finnish Meteorological institute, Climate Research Program, Helsinki, Finland ¹⁸Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, Japan ¹⁹Center for Climate Systems Research, Columbia University, New York, USA ²⁰NASA Goddard Institute for Space Studies, New York, USA ²¹HYGEOS, Lille, France

Under revision in ACP:

https://acp.copernicus.org/prepr ints/acp-2019-1214/

Revised manuscript available in AeroCom workshop material

Overview

- 14 models participating in the AeroCom Phase III CTRL experiment have been worked up and evaluated in a new reference paper.
- Detailed information about the models has been collected, see <u>here</u>.
- **Part 1:** Aerosol lifecycle and inter-model diversity have been assessed and compared with Phase I (AP1) simulations.
- *Part 2:* Simulated optical properties have been evaluated against observations
 - Column optical properties (total, fine and coarse AOD, Angstrom Exponent) against ground and space based observations from AERONET, AATSR, MODIS and a merged satellite AOD dataset.
 - For the first time, models were evaluated against measurements of surface in situ dry scattering and absorption coefficients from GAW observation sites.
 - Details & Discussion: see talk of B. Andrews in breakout session 1

Some results (from the ensemble median)

- **Absorption?** BC burden and optical depth (OD) decreased by almost 50% compared to AP1.
- Natural aerosol? Relative AOD contribution of sea salt and dust shifted from approximately equal to ²/₃ in AP3 compared to AP1
 - Documented emission parameterisation, resolution, lifetime changes.
 - Dust too fine but likely less fine than in AP1 \rightarrow DU MEC overestimated?
 - Sea salt smaller and longer lived, possible implications for water uptake, scattering enhancement, cloud optical properties and lifetime.
- Ensemble underestimates all optical properties investigated
 - Coarse AOD and surf. scattering most underestimated → natural aerosol, sea salt water uptake
 - Fine AOD bias ca -15% \rightarrow direct forcing underestimated?
 - Ambient Angstrom Exponent (AE) slightly underestimated → Difficult to interpret (see discussions below)
- Correlations with observations are fairly high
 - → models capture spatio-temporal variability better than magnitude.

ToDo's - proposed activities

- Follow up studies should investigate the individual issues in more detail, e.g.,
- Incorporate pre-industrial state and link aerosol forcing to results
- Link to CMIP6 simulations (e.g., AOD biases)
- Closure: Incorporate more measurements, model diagnostics and dimensions, e.g.,
 - Surface mass concentrations of e.g., BC, SO₄, SS (sodium), SO₂, OC \rightarrow are we missing mass or underestimating MECs?
 - Surface AE, SAE and AAE (additional diagnostics required)
 - Column AAOD from AERONET (link surface with column absorption)
 - Extinction / backscatter profiles from LIDAR or Ceilometer observations
 - Aircraft data (e.g., HIPPO campaigns)
- Some of this has been done already (preliminary), see <u>here</u>, e.g.,
 - Most models underestimate BC and SO_4 mass conc. (mostly European sites).
 - However, SO₂ tends to be overestimated \rightarrow too inefficient conversion of SO₂ \rightarrow SO₄?
 - Many models highly overestimate sea salt mass conc. over Europe.

Aerosol lifecycle diversity

- Documented speciated Emissions, lifetimes, mass burdens, MECs & MACs and resulting optical depths (ODs)
- Comparison with AeroCom phase I (AP1) simulations (Kinne et al., Textor et al., 2006)

Some findings

- Considerable diversity in all parameters (lot's of blues and reds)
- BC lifetime decreased from 6.5 to 5.5 days (still too large, Samset et al., 2014).
- BC burden decreased by almost 50% → underestimate of surf. abs. (see B1_AndrewsB).
- Natural OD: relatively more SS than DU in AP3.
- Species ODs more diverse than total AOD (like in AP1).
 - $\ \ \ \rightarrow \ \$ indeed, total AOD shows overall lowest diversity.
- Very large diversity in new NO3 tracer.

Ē	BC (↑) ·	9.5	9.7	9.7	9.8	9.8	9.6	8.4	9.7	9.7	9.7	9.7	9.7	9.1	9.7	9.7	0.4%	3.8%	11.3	23%		
Q/y	DU (†) ·	1930	848	1120	1170	1380	5650	1640	1480	1360	1400	1560	1090	2150	1880	1440	42%	64%	1640	49%		
E	NO ₃ (↓) ·	20.2	6.2	5.4			101.0	109.0	128.0		11.1	44.8				32.5	286%	90%				
SUG	OA (↓) ·	117.0	108.0	108.0	69.2	76.6	160.0	246.0	158.0	170.0	75.6	48.0	177.0	114.0	134.0	116.0	64%	40 %	96.0	26%		
sio	POA (1) -								62.0	71.2			81.5	77.9		74.6						
nis	SO4 (↓) ·	156.0	142.0	146.0	218.0	216.0	122.0	94.3	95.3	110.0	122.0	144.0	124.0		240.0	143.0	41%	30%	186.0	22%		
Ē	SS (1) -	5090	6640	6620	5920	4160	5e+04	2030	5300	7100	2760	4030	3450	4880	3650	4980	54%	150%	6280	199%		
	BC -	4.5	8.7	8.4	6.4	9.6	3.9	2.9	4.1	5.9	4.2	5.5	6.4	4.4		5.5	41%	35%	6.5	33%		
[p	DU -	3.0	3.9	4.0	6.0	7.0	1.4	3.2	5.4	3.5	5.3	4.5	1.9	3.4	2.2	3.7	56%	39%	4.0	43%	- 100%	
time [NO3 ·	3.0	9.9	10.4			2.5	3.1	2.7		4.7	5.4				3.9	94%	58%				
	OA -	6.1	9.3	8.8	6.0	8.2	4.3	4.3	4.6	4.5	6.3	6.0	6.2	5.3	3.4	6.0	29 %	29%	6.2	27%		
ife	SO4 ·	3.3	6.7	7.0	4.3	5.0	3.1	2.6	4.9	6.3	4.2	4.9	4.9	5.3	1.8	4.9	36%	32%	4.1	18%	- 75%	
_	SS ·	0.61	0.36	0.41	0.63	1.51	0.19	0.50	0.67	0.45	1.09	3.13	1.02	0.46	0.24	0.56	92%	91%	0.41	58%		
	BC -	0.119	0.231	0.224	0.174	0.260	0.104	0.068	0.105	0.157	0.111	0.143	0.171	0.117	0.119	0.131	46%	36%	0.210	42%	5.0%	
<u>[</u>]	DU -	16.1	9.1	12.3	19.5	17.1	22.3	14.3	21.9	12.9	20.5	19.4	5.7	20.1	11.7	16.6	45%	31%	20.5	40%	- 30%	
F	NO ₂ ·	0.164	0.167	0.154			0.690	0.926	0.929		0.142	0.662		0.084		0.167	321%	78%				
den	OA ·	1.95	2.73	2.61	1.14	1.71	1.87	2.87	1.98	2.07	1.30	0.79	2.99	1.65	1.24	1.91	57%	34%	1.76	27%	- 25%	
nro	SO 4	1.41	2.62	2.78	2.58	2.95	1.02	0.66	1.29	1.92	1.39	1.92	1.67	2.76	1.18	1.80	72%	39%	1.98	25%		
8	SS ·	8.6	6.5	7.5	10.3	10.2	26.4	2.8	9.8	8.8	8.3	10.9	9.7	6.2	2.5	8.7	38%	59%	6.4	54%		
	PC.	0 002	(0 002)	(0 002)		0 002	0.002	0 001	0 002	0.004	0 003	(0,001)	0 002	0 002	0.001	0 002	20%	33%	0.004	45%	- 10%	144
	DU -	0.002	0.003	(0.002)	(0.002)	0.025	0.002	0.001)	0.002	0.004	0.003	0.001)	0.002	0.002	0.0017	0.002	37%	33%	0.004	4370		č
	NO -	0.013	0.022	0.029	0.031	0.025	0.020	0.011	0.020	0.019	0.021	0.005	0.019	0.024	0.017	0.021	52 /0 60%	57%	0.032	42 /0		100
	00.	0.002	0.003	0.002	0.013	0.018	0.003	0.010	0.027	0.031	0.003	0.000	0.029	0.002	0.034	0.022	82%	43%	0.018	34%	-10%	<
Δ	50 -	0.010	0.035	0.036	0.015	0.010	0.017	0.033	0.027	0.046	0.014	0.003	0.025	0.044	0.040	0.022	70%	39%	0.010	37%		
0	504	0.010	0.033	0.033	0.045	0.045	0.048	0.015	0.027	0.040	0.024	0.047	0.013	0.038	0.040	0.033	60%	41%	0.030	41%	250/	
	н.о.	0.063	0.055	0.058	0.096	0.087	01010	01010	01050	010 10	01000	01001	0.089	0.048	0.070	0.067	45%	24%	010.00	1270	-23%	
			0.000	01000	0.148	01001	0.110	0.097	0.125	0.140			0.144	0.130	0.104	0.128	26%	14%	0.127	18%		
		0.106	0.132	0.138	0.135	0.155					0.127	0.156	0.130		0.060	0.132	9%	22%			50%	
	100 (00)	10.2	(E.Q)	(5.2)	(6.0)	(5.7)	0.4	(0.2)	10 5	11.0	12.7	(4.9)	7.1	12.4	2.7	10.2	349/	310/	0.1			
Ξ	BC -	0.20	(5.6)	(5.5)	(0.0)	(3.7)	9.4	(0.2)	10.5	0.74	15.7	(4.6)	1.1	0.62	0.74	0.74	34%	31% 4E9/	9.1	3370		
1 ² /g	DU ·	5.2	8.1	8.1	0.00	0.75	3.8	5.5	3.0	0.74	18.2	4.2	1.00	9.7	0.74	5.5	71%	58%	0.92	44 /0	75%	
5	NO3 ·	1.2	7.6	7.0	5.6	5.2	3.0	5.5	7.0	70	5.5	4.2	5.0	9.7	12.2	5.5	7170	33 %	5.4	200/		
Ê	CA ·	- 4.3	6.0	7.0	0.0	7.7	4.0 9.2	12.0	7.0	12.2	9.0	12.5	3.0	0.3	17.2	9.5	57%	33 /0	9.4	54%		
Σ	504	3.58	2.28	2.23	2.86	3 25	0.2	2.82	J.Z	2 33	3.68	2.86	4.7	3.11	2.62	2.84	32%	38%	9.0 2.04	53%		
[6]	- 22	5.50	2.20	2.25	2.00	5.25	0.95	2.02	1.05	2.55	5.00	2.00	4.11	5.11	2.02	2.04		20 /0	2.54		×.	
m ² /	BC -	9.1			(10.2)	(15.0)		(10.4)	7.8		10.0	(7.5)	3.2	13.0	3.1	8.5						
<u> </u>	DU -	0.027			0.015	0.033			0.046		0.053	0.048	0.050	0.042	0.031	0.042	40%	31%				
MA(OA ·	0.163			0.080	0.112					0.274	0.142	0.265	0.110	0.122	0.132	58%	43%				
-		S	N.	ch	N.	42	5	8	S	NA	AL	(F	24	3	S	MED	δ_{IQR}	δ_{std}	MED	δ_{std}		
	Å	R . 4	3	11	Hr SF	SAL N		" ENIT (E al Alt		Nº K	5 .	CIP. WIAT		AP3 (this study)			AF	21		
	MS	40		CHAR	ARM FORM				GU	GISS		40,	OSIO	CPRIN	CPR11							
	c			\$	CU.	v								- /								

Thank you

Aerosol lifecycle diversity

Meteorologisk 8

Aerosol lifecycle - regional diversity

AeroCom workshop, Results from AP3-CTRL, J. Gliß, October 2020

Ensemble median biases vs observations

Ensemble median 2010 biases vs different observations

AeroCom workshop, Results from AP3-CTRL, J. Gliß, October 2020

Model biases and correlation compared to observations

Click me

AeroCom workshop, Results from AP3-CTRL, J. Gliß, October 2020

Model AE biases in different size regimes

