Status of phase III CTRL Overview of Gliß et al., 2020 paper

J. Gliß, A. Mortier, E. Andrews, M. Schulz and community Norwegian Meteorological Institute - MetNO

Phase III Control reference paper

AeroCom phase III multi-model evaluation of the aerosol lifecycle and optical properties using ground and space based remote sensing as well as surface in situ observations

Jonas Gliß¹, Augustin Mortier¹, Michael Schulz¹, Elisabeth Andrews², Yves Balkanski³, Susanne E. Bauer^{20,19}, Anna M. K. Benedictow¹, Huisheng Bian^{4, 5}, Ramiro Checa-Garcia³, Mian Chin⁵, Paul Ginoux⁶, Jan J. Griesfeller¹, Andreas Heckel⁷, Zak Kipling⁹, Alf Kirkevåg¹, Harri Kokkola¹⁰, Paolo Laj¹¹, Philippe Le Sager¹², Marianne Tronstad Lund¹⁵, Cathrine Lund Myhre¹³, Hitoshi Matsui¹⁴, Gunnar Myhre¹⁵, David Neubauer¹⁶, Twan van Noije¹², Peter North⁷, Dirk J. L. Olivié¹, Samuel Rémy²¹, Larisa Sogacheva¹⁷, Toshihiko Takemura¹⁸, Kostas Tsigaridis^{19,20}, and Svetlana G. Tsyro¹ ¹Norwegian Meteorological Institute, Oslo, Norway ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA ³Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSO, Gif sur Yvette Cedex, France ⁴Maryland Univ. Baltimore County (UMBC), Baltimore, MD, USA ⁵NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ⁶NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA ⁷Dept. of Geography, Swansea University, Swansea, UK ⁹European Centre for Medium-Range Weather Forecasts, Reading, UK ¹⁰ Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland ¹¹ Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, Institute for Geosciences and Environmental Research (IGE), Grenoble, France ¹²Royal Netherlands Meteorological Institute, De Bilt, the Netherlands ¹³ NILU - Norwegian Institute for Air Research, Kjeller, Norway ¹⁴ Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan ¹⁵ CICERO Center for International Climate and Environmental Research, Oslo, Norway ¹⁶ Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ¹⁷ Finnish Meteorological institute, Climate Research Program, Helsinki, Finland ¹⁸ Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, Japan ¹⁹ Center for Climate Systems Research, Columbia University, New York, USA ²⁰NASA Goddard Institute for Space Studies, New York, USA ²¹ HYGEOS, Lille, France

Under revision in ACP:

[https://acp.copernicus.org/prepr](https://acp.copernicus.org/preprints/acp-2019-1214/) [ints/acp-2019-1214/](https://acp.copernicus.org/preprints/acp-2019-1214/)

Revised manuscript available in AeroCom workshop material

Overview

- 14 models participating in the AeroCom Phase III CTRL experiment have been worked up and evaluated in a new reference paper.
- Detailed information about the models has been collected, see [here](https://docs.google.com/spreadsheets/d/1VN_mG2r3bqQuzDVUajBwqohlbp_fHRsNe9ThfuHnHUs/edit#gid=2129883531).
- *Part 1:* Aerosol lifecycle and inter-model diversity have been assessed and compared with Phase I (AP1) simulations.
- *Part 2:* Simulated optical properties have been evaluated against observations
	- Column optical properties (total, fine and coarse AOD, Angstrom Exponent) against ground and space based observations from AERONET, AATSR, MODIS and a merged satellite AOD dataset.
	- For the first time, models were evaluated against measurements of surface in situ dry scattering and absorption coefficients from GAW observation sites.
	- *○ Details & Discussion: see talk of B. Andrews in breakout session 1*

Some results (from the ensemble median)

- *Absorption?* BC burden and optical depth (OD) decreased by almost 50% compared to AP1.
- *Natural aerosol?* Relative AOD contribution of sea salt and dust shifted from approximately equal to ⅔ in AP3 compared to AP1
	- Documented emission parameterisation, resolution, lifetime changes.
	- Dust too fine but likely less fine than in AP1 ⇾ DU MEC overestimated?
	- Sea salt smaller and longer lived, possible implications for water uptake, scattering enhancement, cloud optical properties and lifetime.
- Ensemble underestimates all optical properties investigated
	- \circ Coarse AOD and surf. scattering most underestimated \rightarrow natural aerosol, sea salt water uptake
	- \circ Fine AOD bias ca -15% \rightarrow direct forcing underestimated?
	- Ambient Angstrom Exponent (AE) slightly underestimated ⇾ Difficult to interpret (see discussions below)
- Correlations with observations are fairly high
	- \rightarrow models capture spatio-temporal variability better than magnitude.

ToDo's - proposed activities

- Follow up studies should investigate the individual issues in more detail, e.g.,
- Incorporate pre-industrial state and link aerosol forcing to results
- Link to CMIP6 simulations (e.g., AOD biases)
- Closure: Incorporate more measurements, model diagnostics and dimensions, e.g.,
	- \circ Surface mass concentrations of e.g., BC, SO₄, SS (sodium), SO₂, OC \rightarrow are we missing mass or underestimating MECs?
	- Surface AE, SAE and AAE (additional diagnostics required)
	- Column AAOD from AERONET (link surface with column absorption)
	- Extinction / backscatter profiles from LIDAR or Ceilometer observations
	- Aircraft data (e.g., HIPPO campaigns)
- Some of this has been done already (preliminary), see [here,](https://aerocom-evaluation.met.no/overall.php?project=aerocom&exp=PIII-optics2019-P) e.g.,
	- \circ Most models underestimate BC and SO₄ mass conc. (mostly European sites).
	- However, SO₂ tends to be overestimated → too inefficient conversion of SO₂ → SO₄ ?
	- Many models highly overestimate sea salt mass conc. over Europe.

Aerosol lifecycle diversity

- Documented speciated *Emissions, lifetimes, mass burdens, MECs & MACs and resulting optical depths (ODs)*
- Comparison with AeroCom phase I (AP1) simulations (Kinne et al., Textor et al., 2006)

Some findings

- Considerable diversity in all parameters (lot's of blues and reds)
- BC lifetime decreased from 6.5 to 5.5 days (still too large, Samset et al., 2014).
- BC burden decreased by almost $50\% \rightarrow$ underestimate of surf. abs. (see *B1_AndrewsB*).
- Natural OD: relatively more SS than DU in AP3.
- Species ODs more diverse than total AOD (like in AP1).
	- ⇾ indeed, total AOD shows overall lowest diversity.
- Very large diversity in new NO3 tracer.

Thank you

Aerosol lifecycle diversity

Aerosol lifecycle - regional diversity

Ensemble median biases vs observations

Ensemble median 2010 biases vs different observations

Model biases and correlation compared to observations

[Click me](https://aerocom-evaluation.met.no/overall.php?project=aerocom&exp=PIII-optics2019-P)

Model AE biases in different size regimes

