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What's new for 2019?

« Completed analysis of current pixel-
level uncertainties with 7
participating satellite teams

« ADV, BAR, CISAR, :
Deep Blue, MISR, ORAC

* None are perfect but all have some
value

e Submitted paper to AMT (waiting on
editor & initial handling)

* Review of existing uncertainty
estimates

* Framework to evaluate them
 Results for the above teams

* A concrete, explicit AEROSAT
paper —well done team!
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Abstract. Recent years have seen the increasing inclusion of per-retrieval prognostic (predictive) uncertainty estimates within
satellite acrosol optical depth (AOD) data sets, providing users with quantitative tools to assist in optimal use of these data.
Prognostic estimates contrast with diagnostic (i.e. relative to some external truth) ones, which are typically obtained using
sensitivity and/or validation analyses. Up to now, however, the quality of these uncertainty estimates has not been routinely
assessed. This study presents a review of existing prognostic and diagnostic approaches for quantifying uncertainty in satellite
AOD retrievals, and presents a general framework to evaluate them, based on the expected statistical properties of ensembles of
estimated uncertainties and actual retrieval errors. It is hoped that this framework will be adopted as a complement to existing
AOD validation exercises; it is not restricted to AOD and can in principle be applied to other quantities for which a reference

validation data set is available. This framework is then applied to assess the uncertainties provided by several satellite data sets



Key concepts (1)

e Uncertainty and error are different

e Uncertainty is an expression of level of confidence in the result, of
expectation of the error distribution

* Error is a realisation drawn from the uncertainty distribution
« Analogy with rolling a die, expectation is 3.5 (cf. uncertainty) but result
Is1, 2, 3,4,5, or 6 (cf. error)
 When we provide a level 2 uncertainty estimate, suggest we
agree to provide a one standard deviation confidence interval
around the solution



Key concepts (1)

(a) Simulated AOD histogram

(b) Actual and expected error
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Figure 1. (a) Sample AOD histogram drawn from a lognormal AOD distribution with geometric mean 0.2 and geometric standard deviation
0.35. (b) Distribution of (black) estimated retrieval uncertainties and (red) actual absolute retrieval errors obtained if error characteristics

followed the MODIS DT land model, es = 4(0.05 4+ 0.157).

Uncertainty and error distributions do, and should, have different shapes



Key concepts (2)

e Uncertainty estimates may be diagnostic (relative to some
known truth) or prognostic (predictive)

* Prognostic are, if reliable, more useful for real-time applications
(e.g. data assimilation)
* These can be full formal error propagation (BAR, CISAR, ),
empirical (Deep Blue), or in between (ADV, MISR)

e Uncertainties may be evaluated using expected statistical
properties of ensembles of normalised errors
e |.e. error divided by uncertainty
« Account for uncertainty on the reference in the normalisation



How can we evaluate uncertainty estimates? (1)

(b) Normalised error CDF

(a) Normalised error PDF
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Figure 3. (a) PDF and (b) CDF of normalised error distributions drawn from the numerical simulations in Figure 1; theoretical (grey shading)
and simulation (red) results lie on top of one another. Note the CDF is of absolute normalised error. Dashed lines indicate various well-known

percentage points of Gaussian distributions.

e Look at PDFs and CDFs of normalised error, using a reference such as AERONET

 Tells you about the bias in the retrieval, and the overall magnitudes of the error, with
respect to expected uncertainties



How can we evaluate uncertainty estimates? (2)

* Look at percentiles of binned Percentiles of absolute error

absolute retrieval error as a T :
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Figure 4. Expected AOD discrepancy against percentiles of absolute AOD retrieval error. Symbols indicate binned results from the numerical
simulation; within each bin, paler to darker tones indicate the 38th, 68th, and 95th percentiles (approximate 0.50, 1o, 20 points) of absolute

retrieval error. Dashed lines (0.5:1, 1:1, 2:1 respectively) show theoretical values for the percentiles of the same colour.



Example real results (1)

(a) Avignen, CDF (b) Avignon, 1o
10— 05— T
- ADV -
5 0.8r BAR 0.4+
B - 5 -
Z osf S 5 0.3F
N DB T .
= 04r 2 0.2 .
E i MISH E [~ *_' “IW
o 0.2 OBAC -E 0.1 —m/‘
oo . ., . . ool ™ ]
0 1 2 3 4 5 0.0 0.1 0.2 0.3 0.4 0.5
MNormalised AOD error Expected discrepancy

* Left: At sites often thought easy to retrieve (e.qg. flat, densely-
vegetated land, moderate SSA), algorithms tend to overestimate

uncertainty

* Right: Some skill in discriminating between relatively lower and
higher-uncertainty regimes



Example real results (2)

(j) llorin, CDF
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 When confronted by a situation outside of family of retrieval
assumptions (e.g. SSA at llorin is significantly lower than DT,
MISR algorithms include), uncertainty estimates tend to falil
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Example real results (3)

(m) ICIPE Mbita, CDF

(n) ICIPE Mbita, 1
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* In complicated terrain ge.g. potential mixed land/water pixels), some algorithms
rovide retrievals which have larger errors than expected, while others provide
ewer/no retrievals at all

e |s it better to report a ?ossibly-bad retrieval, or provide nothing at all? Likely
application-dependent. How should these decisions be communicated in



Possible next steps within AeroSat

* Individual teams to perform larger-scale evaluation/refinement of
uncertainty estimates?
 MISR team have recently done this for v23 dark water
 Incorporate dispersion between AOD retrievals for different optical models into
estimates ( ocean, ORAC)?
e Can we extend to other aerosol properties?
e Paper gives some suggestions; quantities like FMF, SSA, AE often bounded
and/or have large uncertainties on reference data
« Can we move towards propagation of L2 uncertainties into L3 data?

o Study how often, relative to expectations, algorithms do vs. do not
provide retrievals?

Andy can’t be here but would love to lead/collaborate on any of the above!
Thomas, thanks for presenting! Everyone, thanks for comments on this
work over the past several years!
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