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Take-home points:

= The atmosphere contains —four times more coarse dust (D
> 5 um) than included in models

= Accounting for the missing coarse dust adds a direct radiative
effect of 0.15 = 0.06 W m~
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Has dust exerted a substantial “missing” radiative forcing?

= Dust increased strongly in many regions since Pl (arx &
Hooper, ‘18)

o Might have globally ~doubled (Mahowald et al., ‘10; Marx & Hooper, ‘18)
o Not represented well in current climate models

= Possibly substantial “missing” radiative forcing
o Need to figure out net direct (and indirect) radiative effect of dust!
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So does dust warm or cool? We don’t know!

Dust direct effect depends on dust sizes

o Fine dust (D <5 um) cools by
scattering SW

o Coarse dust (D 25 um) warms by
absorbing SW and LW

o AeroCom phase 1 models indicated
strong net cooling

Global dust DRE at TOA (Wm)

But AeroCom models have fine bias

o Emit too much fine dust, not enough
coarse dust

- Dustis less cooling, could net warm
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Large uncertainties remain!
o Optical properties, especially LW (Di
Biagio et al., 2017)

o Models still greatly underestimate O g e
coarse dust (e.g., Ryder et al., 2019) 0.2 1 10 20
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1.

Several lines of evidence
indicate that models greatly
underestimate coarse dust

Lidar measurements show models
significantly underestimate coarse
dust over North Atlantic (Ansmann et
al., 2017)

Coarse dust particles are found at
greater distances than possible from
model simulations (Maring et al., 2003,
Weinzietl et al. 2017, van der Does et al.
2018).
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Several lines of evidence
indicate that models greatly
underestimate coarse dust

1. Lidar measurements show models
significantly underestimate coarse
dust over North Atlantic (Ansmann et
al., 2017)

2. Coarse dust particles are found at
greater distances than possible from
model simulations (Maring et al., 2003,
Weinzierl et al. 2017, van der Does et al.
2018)..

5. Dozens of in situ measurements show
much more coarse dust than
simulated in model ensemble
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Central questions:

* How much coarse dust 1s missing
from climate models?

* What 1s the direct radiative impact
of the missing coarse dust?




Joint experimental-modeling analysis to
constrain 3D atmospheric dust size distribution

Ensemble of simulated 3D size Dozens of in situ

distributions (GISS, WRF-Chem, measurements of

Arpege, IMPACT, CESM, GEOS- atmospheric dust size
Chem) distribution

l

For each model, determine
correction factor (as a function of
D) that minimizes disagreement
against measurements

|

Constraint on 3D

atmospheric dust size Propagate uncertainties using
distribution: kb procedure based on bootstrap

method
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Our estimates agree better with measurements
over different locations, height levels, and seasons

=> Almost complete elimination of bias
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Central questions:

* How much coarse dust 1s missing
from climate models?

* What 1s the direct radiative impact
of the missing coarse dust?




Joint experimental-modeling analysis to
constrain dust direct radiative effect

Ensemble of simulated 3D size
distributions (GISS, WRF-Chem,
Arpege, IMPACT, CESM, GEOS-Chem)

}

For each model, determine correction
factor (as a function of D) that minimizes
disagreement against measurements

Dozens of in situ
measurements of
atmospheric dust size
distribution

Dust extinction
efficiency, 0. (D)
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Constraint on 3D
atmospheric dust size
distribution:
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Missing coarse dust adds ~0.1 W/m? warming
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= Accounting for missing coarse dust increases TOA
warming by 0.15 + 0.06 Wm™

Still unclear if dust direct radiative effect net warms or cools!




‘ Summary

= The atmosphere contains 17 + 5
Tg coarse dust
0 AeroCom (phase I) models

account for only ~quarter of
coarse dust

m  Missing coarse dust adds 0.15 + 0.
06 W m™ of TOA direct warming

a0 Helps remedy model
underestimation of absorption

m  Missing coarse dust implies
important processes are missing
from current models!
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| Take-home points:
= The atmosphere contains —four times more coarse dust (D
> 5 um) than included in models

1= Accounting for the missing coarse dust adds a direct radiative
effect of 0.15 = 0.06 W m-2
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Okay, so WHY do models greatly
underestimate coarse dust?

= Not enough coarse dust emitted

= Likely because coarse particles are difficult to measure
because of losses in inlet system for D > 5 um

= But measurements show that coarse dust deposits too
quickly in models (e.g., Weinzierl et al. 2017). Why?
= Dust is highly aspherical > models overestimate settling
speed by ~20% (Huang, Kok et al., in prep)
= Turbulence in dusty layers can slow settling (e.g., Gasteiger
et al., 2017)

s EXxcessive numerical diffusion due to insufficient vertical

resolution (Zhang et al., 2018) and/or diffusive advective
schemes (Ginoux, 2003)

= Electrification of dust might counteract gravitational settling
(Ulanowski et al., 2007)



Direct Radiative Effect
(Net DREox - W m™)

Coarse dust warms atmosphere more than

previously estimated
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Radiative effect efficiency
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Globally-averaged emitted dust size
distribution

s 7 studies of size distribution of emitted dust

= Limited dependence on wind speed and soil properties (Gillette, 1974;
Kok, ACP, 2011; Rosenberg et al., 2014)

- Each data set is a measure of globally-averaged emitted dust size distribution

= Most likely emitted size distribution and 95%b6 confidence
iInterval from maximum likelihood and bootstrap methods
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Fine dust cools: coarse dust warms
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Measurements also show giant dust (D > 20
um) important to radiative budget
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